http://doi.org/10.21272/mmi.2019.4-23

JEL Classification: C02, C10,E27

Juliya Kasaeva, Sumy State University, Ukraine

DEVELOPING THE METHODOLOGY OF ASSESSING THE POTENTIAL OF COUNTRIES TO ATTRACT FOREIGN DIRECT INVESTMENT

Abstract. To accelerate the transformation process in all spheres of economic and social life the relevance of the adequate assessment of the countries' investment potential was determined in this article. The innovation process has a high impact on the investment potential of the countries through every sector of the economy. As a result, the countries competitiveness depends on the level of technological innovation. The scientific methodological approach to the estimation of countries' investment potential by the adoption of Hurst exponent was proposed. It is based on the magnitude of the accumulated deviation and reflects the economic essence of the concept of potential. As the time series in Hurst exponent calculation, the theoretical (predictive) values of the global attractiveness index were taken. It was determined by the econometric model of the dependence of the effective feature on five integral indicators of the following groups: infrastructure, science and education, ecology and human health, technology, socio-economic conditions. The integrated indexes for each group were calculated by normalizing the input dataset using the relative method, narrowing it with the relative scatter method and generalization with the arithmetic mean. The five-factor nonlinear regression model of the dependence of the global foreign direct investment attractiveness index on five integrated indexes of the groups was created with the Cobb-Douglas function. The calculations were performed for countries such as United States, United Kingdom, Germany, France, Spain, Estonia, the Czech Republic, China, Poland, the Slovak Republic, Romania, Ukraine. This study shows that at the present moment the Slovak Republic, Ukraine and the Czech Republic have the highest investment potential. Therefore, the value of the proper indicator is equal to 60%. At the same time, the lowest investment potential shows the United Kingdom, Spain and Poland, where unused investment opportunities are less than 40%. The obtained results let us define further development opportunities and establish the mechanism for directing the financial resources to the country.

Keywords: Cobb-Douglas production function, FDI, the Hurst exponent, investment appeal, the potential for inward foreign direct investment, regression analysis.

Introduction. Due to the increasing economic globalization, the development of international financial architecture led not only to the free but also very rapid movement of the capital in the world. Investors can buy various assets in any country rather quickly and with moderately low transaction cost (Bilan et al., 2019, Lobanova et al., 2018). However, ones carefully explore not only the cost of agreement and its further profitability but also the country where the asset is located. In the modern business environment during the decision-making process on financing the project, along with economic indicators, investors also try to ensure the social and environmental responsibility of business. Also, a key factor is the level of technology readiness of the asset itself as well as the environment where it is located. That is crucial because after a while, either the asset may not be competitive in the market or the environment will not be technological. As a result, the business centres will move to the other country (Kotikova and Vavrek, 2019). The basic criterion affecting investment decision is also human capital. It can be estimated by the level of science, education and health. Without any doubts, the qualification and education of the workforce ensure business to achieve efficiency under the changing of internal and external operating conditions. Therefore, the governments all around the world are interested in building the favourable investment climate, encouraging the investment of internal and external financial resources in a specific sector of economy or business process, that will lead to its successful transformation and reaching new level of development (Cieślik and Hien Tran, 2019). Thus, it becomes relevant to develop a methodology for

Cite as: Kasaeva, J. (2019). Developing the Methodology of Assessing the Potential of Countries to Attract Foreign Direct Investment. *Marketing and Management of Innovations*, 4, 292-307. http://doi.org/10.21272/mmi.2019.4-23 assessing the potential for investment considering not only the socio-economic conditions but also the infrastructure, technology, science and education, environment and human health.

Literature Review. A vital number of scientists all around the world devoted their researches to the evaluation and stimulation of the investment process. The influence of foreign direct investment on economic growth remains the burning issue to modern science. It should be noted that for each country, the impact of investment on the political, economic and social process is different. The role of foreign direct investment in various areas of the economy in the Slovak Republic was studied by Táncošová (2019). The opportunities for economic growth as a result of attracting foreign direct investment to the Republic of India were outlined by Agnihotri and Arora (2019). The impact of investment on economic as well as social processes in the Czech Republic was identified by Hlaváček and Janáček (2019). Besides, Marcel (2019) and Simionescu (2018) determined the power of influence of foreign direct investment on the speed of economic restructuring respectively for the Republic of Benin and Romania. For the overall group of developing countries, the relationship between the investments, economic growth and corruption was found out by Nauedie (2018). A lot of scientific papers are devoted to the evaluation of investment attractiveness from different perspectives. Thus, Goncharuk and Karavan (2013) studied the methods and features measuring investment attractiveness. Kharlamova (2014) evaluated investment attractiveness at the macro level, followed by the ranking of the study objects. Dierkes et al. (2010) worked on forecasting the opportunities for improving the investment attractiveness of the countries and therefore building the investment strategy. Above all, we would like to mention the scientists that study the factors that contribute to drawing foreign direct investment to the country. Thus, Blonigen (2019) identified the motivational factors that intensify investment activities in transnational corporations. Blonigen and Piger (2019) conducted empirical studies of bilateral foreign direct investment, which allows building an effective strategy for purposeful directing the investment in the particular sector of the economy. Nazarczuk and Krajewska (2018) substantiated the determinants of dependence between the foreign direct investment source and distance to the recipient of funds. Ohotina et al. (2018) identified the factors that make the investment climate attractive. The mathematical formalization of the investment-related process is described in studies of Hrytsenko et al. (2017), Kozmenko and Roienko (2013). Thus, the first group of scientists optimized investments based on the territorial principle and the second one determined the most relevant investment activity indicators for the insurance companies. Furthermore, the category of potential for investment and its assessment was considered by Leonov et al. (2014). This group of scientists identified the investors potential in the stock market. At the same time, despite the high number of studies in the investment field, the problem of adequate assessment of the country potential for investment is of paramount importance.

Methodology and research methods. To mathematically describe the evaluation of the market's potential for investment, it is proposed to consider the category potential as an unreachable opportunity. So, that may be defined as a difference between the maximum possible indicator level and its guaranteed value. Besides, we consider not only the difference but also the magnitude of the cumulative deviation that is long-term series memory. Therefore, the model of assessing the potential of markets to attract foreign direct investment will be based on the adopted Hurst exponent (persistence time-series characteristics), calculated based on the magnitude of the accumulated deviation and reflects the economic essence of the concept of potential:

$$\frac{R}{c} = (\alpha \cdot N)^H \tag{1}$$

where *H* – the Hurst exponent; *R* – the magnitude of the accumulated deviation; *S*– the mean square deviation of the time series; *N* – the number of periods; α – a positive number, given constant.

Therefore,

$$H = \frac{\log\left(\frac{R}{S}\right)}{\log\left(\alpha \cdot N\right)} \tag{2}$$

where the magnitude of the accumulated deviation:

$$R = \max_{\substack{1 \le u \le N}} Z_u - \min_{\substack{1 \le u \le N}} Z_u$$
(3)
$$Z_u = \sum_{i=1}^{u} (y_i - \bar{y})$$
(4)

 $Z_u = \sum_1^u (y_i - \bar{y})$ where \bar{y} – the arithmetic means of the time series; y_t – level of the time series.

As the time series for calculation of the Hurst exponent, it is proposed to use the theoretical (forecast) values of the global foreign direct investment attractiveness index, determined by the econometric model dependence of the response variable on five integrated indexes of the following groups: infrastructure, science and education, environment and human health, technology, socio-economic conditions. At the same time, instead of the absolute value of the global foreign direct investment attractiveness index (Table A.1) presented in the form of ranks, it is suggested to select the derived indicator determined by applying Savage normalization (Table 1):

$$Y_t = \frac{\max_{t} y_t - y_t}{\max_{t} y_t - \min_{t} y_t}$$
(5)
Table 1. Savage normalization of the global foreign direct investment attractiveness index

Table 1. Savage normalization of the global foreign direct investment attra	activeness in	dex
---	---------------	-----

GFICA index	2013	2014	2015	2016	2017	2018
United States	1.00	1.00	1.00	1.00	1.00	1.00
United Kingdom	0.98	0.99	0.99	0.98	0.98	0.98
Germany	0.96	0.96	0.96	0.95	0.95	0.94
France	0.87	0.87	0.88	0.87	0.87	0.87
Spain	0.81	0.81	0.81	0.82	0.82	0.81
Estonia	0.79	0.80	0.80	0.81	0.79	0.79
Czech Republic	0.78	0.78	0.78	0.78	0.78	0.78
China	0.69	0.70	0.69	0.73	0.75	0.76
Poland	0.67	0.67	0.68	0.70	0.71	0.71
Slovakia	0.65	0.66	0.64	0.65	0.65	0.65
Romania	0.56	0.55	0.59	0.60	0.58	0.58
Ukraine	0.38	0.44	0.44	0.46	0.45	0.47

Source: developed by authors.

To build the model that estimates the potential of markets to attract foreign direct investment represented by a regression nonlinear five-factor model, it is proposed to choose a multiplicative model of the Cobb-Douglas function. (Shlafman N., Frolina K., Gotal Dmitrovic L. (2018)):

$$Y = a_0 \cdot \prod_i x_i^{a_i} \tag{6}$$

where Y – response variable, the global foreign direct investment country attractiveness index; a_0 econometric model parameter, free term; x_i - i-th factor, quantitative assessment of the i-th generalizing characteristic of the corresponding group of indicators for assessing the countries potential for investment; a_i – i-th parameter of the econometric model, the degree of i-th explanatory variable.

As the explanatory variables we consider the five integrated indexes of the groups such as infrastructure, science and education, environment and human health, technology, socio-economic condition, so the formula (6) becomes the following:

$$Y = a_0 \cdot x_1^{a_1} \cdot x_2^{a_2} \cdot x_3^{a_3} \cdot x_4^{a_4} \cdot x_5^{a_5} \tag{7}$$

Marketing and Management of Innovations, 2019, Issue 4 http://mmi.fem.sumdu.edu.ua/en

where x_1 - the integrated index of the infrastructure group evaluation; x_2 - the integrated index of the science and education group evaluation; x_3 - the integrated index of the environment and human health group evaluation; x_4 -the integrated index of the technology group evaluation; x_5 - the integrated index of the socio-economic condition group evaluation.

To evaluate the global foreign direct investment country attractiveness index (normalized by the Savage method of the response variable of the model (6)) it is offered to choose the methodology Nardo et al (2005). In turn, the integrated indexes within each group are determined by normalizing the input information base using the relative method (Table 2), followed by weighing with the relative scatter method and summarizing by arithmetic mean method.

				~ ~ ·			
Country Name	Name	2013	2014	2015	2016	2017	2018
1	2	3	4	5	6	7	8
Czech Republic	T1	47.35	48.28	50.51	51.50*	52.39*	53.29*
Czech Republic	T2	11.10	11.66	12.02	13.39	14.02	15.39*
Czech Republic	T3	13.11	13.42	13.54	12.72	13.33	13.80*
Czech Republic	T4	14.79	14.92	14.90	14.02	12.77	13.34
Czech Republic	T5	1079.87	1417.63	2048.82	11991.39	25419.94	42361.46
Ukraine	T1	42.01	31.10	30.36	31.11*	31.67*	31.59*
Ukraine	T2	7.88	13.72	16.92	18.56	19.48	23.18*
Ukraine	T3	0.93	0.96	0.82	0.95	0.93	0.95*
Ukraine	T4	5.89	6.51	7.27	5.75	4.98	5.00*
Ukraine	T5	54.03	74.70	141.80	1905.47	3948.26	6027.81
United Kingdom	T1	50.53	50.18	47.37	47.55*	47.82*	48.20*
United Kingdom	T2	6.83	7.34	7.37	7.57	7.37	7.57*
United Kingdom	T3	3.82	4.16	4.10	4.50	4.25	3.89*
United Kingdom	T4	21.86	20.65	20.81	21.83	21.07	20.71
United Kingdom	T5	2832.50	3250.50	4385.41	8698.55	21195.89	27250.08
United States	T1	41.17	41.17	41.17	40.59*	40.01*	39.48*
United States	T2	4.91	4.68	4.84	5.08	5.29	5.33*
United States	T3	8.88	8.97	9.44	9.66	9.49	9.13*
United States	T4	17.82	18.23	18.99	20.00	13.82	13.10*
United States	T5	4303.16	5129.54	6358.80	11435.11	30335.70	65767.56
Slovak Republic	T1	50.02	47.52	48.19	48.98*	50.14*	51.28*
Slovak Republic	T2	11.02	10.49	10.50	13.01	14.85	16.06*
Slovak Republic	T3	17.55	17.63	16.65	16.52	16.35	17.89*
Slovak Republic	T4	10.31	10.22	10.29	9.88	10.93	11.67*
Slovak Republic	T5	493.78	657.73	1068.44	3240.78	6963.67	12992.81
Spain	T1	39.65	41.80	40.24	40.59*	41.04*	41.54*
Spain	T2	8.98	9.46	9.18	9.25	9.05	9.07*
Spain	T3	1.07	1.13	1.26	1.38	1.49	1.39*
Spain	T4	7.67	7.00	7.15	6.98	7.05	7.00*
Spain	T5	488.33	625.85	889.57	2762.59	7247.04	11320.67
Romania	T1	41.27	40.79	37.85	38.90*	40.17*	41.55*
Romania	T2	14.14	15.01	16.18	18.21	19.04	19.96*
Romania	T3	3.97	3.83	3.66	3.38	2.99	2.93**

Table 2. The input information base for assessing the markets' potential for investment, the 'technology' group

						Conti	nued Table 2
1	2	3	4	5	6	7	8
Romania	T4	5.72	6.45	7.50	8.50	9.01	9.27
Romania	T5	175.89	246.72	361.23	3421.47	12255.17	15938.12
France	T1	49.50	51.86	49.38	49.60*	49.82*	50.04*
France	T2	6.68	6.93	6.74	6.67	6.66	6.56*
France	T3	3.96	3.86	4.02	3.98	3.93	3.73*
France	T4	25.90	26.09	26.85	26.67	23.55	23.55*
France	T5	821.35	1188.90	1897.19	6674.45	14831.20	20414.95
Poland	T1	38.02	36.96	35.45	35.84*	36.29*	36.88*
Poland	T2	7.65	8.67	9.74	10.71	10.88	11.82*
Poland	T3	6.74	7.74	8.12	7.14	6.92	7.10*
Poland	T4	7.81	8.70	8.78	8.46	7.74	8.18*
Poland	T5	517.74	681.13	955.84	2492.49	6534.93	16225.45
China	T1	41.38	41.38	41.38	41.36*	41.26*	41.17*
China	T2	8.26	9.21	11.29	12.20	12.66	15.03*
China	T3	27.42	25.94	26.56	26.50	27.07	27.59*
China	T4	26.97	25.37	25.65	25.24	23.81	24.01*
China	T5	5.16	9.76	19.68	47.91	209.12	446.71
Germany	T1	61.02	62.20	61.40	62.01*	62.50*	63.00*
Germany	T2	9.86	9.59	10.50	11.66	11.73	12.08*
Germany	T3	4.33	4.52	4.65	4.66	4.96	4.80*
Germany	T4	16.08	16.00	16.66	16.91	13.90	13.67*
Germany	T5	2601.18	3352.79	4297.93	11624.96	34181.28	56391.56
Estonia	T1	28.88	29.22	28.81	29.47*	30.03*	31.16*
Estonia	T2	8.71	9.00	8.64	9.36	10.53	11.65*
Estonia	T3	11.61	12.80	11.91	12.53	9.28	8.81*
Estonia	T4	10.55	11.44	11.39	10.23	16.03	15.77
Estonia	T5	1613.81	2194.68	3120.71	10786.68	29131.22	48933.90

Note: T1 - medium and high-tech industry (including construction) (% manufacturing value added); T2 - ICT service exports (% of service exports, BoP); T3 - ICT goods exports (% of total goods exports); T4 - high-technology exports (% of manufactured exports); T5 - secure Internet servers (per 1 million people); * - forecast values calculated by the average growth rate method;

Source: developed by authors.

Normalization the parameters of the input information base involves taking into account both their catalytic and inhibition nature (table 3), the time frame of the study and the spatial sample of the considered list of countries (Boyko, 2011):

$$n_{tijc} = \frac{k_{tijc}}{\max_{c} k_{tijc}}, n_{tijc} = \frac{\min_{t,c} k_{tijc}}{k_{tijc}}$$
(8)

where n_{tijc} – the normalized value of the i-th indicator j-th group for the t-th year within the c-th country; k_{tijc} – the actual value of the i-th indicator j-th group for the t-th year within the c-th country; $\max_{t,c} k_{tijc} (\min_{t,c} k_{tijc})$ – the maximum (respectively minimum) value of the i-th indicator j-th group for the set of considered countries during the studied time frame.

The values of indicators for assessing the countries' potential for investment (on the example of 'technology' group) are normalized according to formula (8) and presented in Table A.2.

Marketing and Management of Innovations, 2019, Issue 4 http://mmi.fem.sumdu.edu.ua/en

	Infrastructure	Priority
1	Electric power transmission and distribution losses (% of output)	inhibitor
2	Air transport, passengers carried	catalyst
3	Fixed broadband subscriptions (per 100 people)	catalyst
1	Quality of port infrastructure, WEF (1=extremely underdeveloped to 7=well developed	oatalvet
4	and efficient by international standards)	Catalyst
5	Railways, passengers carried (million passenger-km)	catalyst
	Science and education	catalyst
1	School enrolment, secondary (% net)	catalyst
2	Patent applications, residents	catalyst
3	Research and development expenditure (% of GDP)	catalyst
4	Government expenditure on education, total (% of GDP)	catalyst
5	Revenue, excluding grants (% of GDP)	catalyst
	Environment and human health	catalyst
1	People using safely managed drinking water services (% of the population)	catalyst
2	People using at least basic sanitation services (% of the population)	catalyst
3	Current health expenditure (% of GDP)	catalyst
4	Adjusted savings: particulate emission damage (% of GNI)	inhibitor
5	Survival to age 65, male (% of cohort)	catalyst
	Technology	
1	Medium and high-tech Industry (including construction) (% manufacturing value-added)	catalyst
2	Secure Internet servers (per 1 million people)	catalyst
3	ICT service exports (% of service exports, BoP)	catalyst
4	High-technology exports (% of manufactured exports)	catalyst
5	ICT goods exports (% of total goods exports)	catalyst
	Socio-economic conditions	
1	Foreign direct investment, nett inflows (% of GDP)	catalyst
2	Adjusted net national income (annual % growth)	catalyst
2	Labour force participation rate, total (% of total population ages 15-64) (modelled ILO	ootolyot
5	estimate)	Catalyst
4	Self-employed, total (% of total employment) (modelled ILO estimate)	catalyst
5	Wage and salaried workers, total (% of total employment) (modelled ILO estimate)	catalyst

Table 3. The nature of indicators for the assessment of the countries' investment potential

Source: developed by authors.

The list of chosen indicators has different priorities in the general variation of the response variable, so there is a need to calculate the weight coefficients. The indicators weight is calculated by the relative to scatter method, that allows calculating the degree of influence using an objective approach, and it considers the economic essence of the potential:

$$w_{ijct} = \frac{\gamma_{ijct}}{\sum_t \gamma_{ijct}}, \gamma_{ijct} = \frac{\max_t k_{tijc} - \min_t k_{tijc}}{\max_t k_{tijc}} = 1 - \frac{\min_t k_{tijc}}{\max_t k_{tijc}}$$
(9)

where w_{ijct} - the weight coefficient of the i-th indicator for assessing the country investment potential within the j-th group for the t-th year for the c-th country; $\max_{t} k_{tijc}$ - the maximum value of the i-th indicator for assessing the country investment potential within the j-th group during t years for the c-th country; $\min_{t} k_{tijc}$ - the minimum value of the i-th indicator for assessing the country investment potential within the j-th group during t years for the c-th country; $\min_{t} k_{tijc}$ - the minimum value of the i-th indicator for assessing the country investment potential within the j-th group during t years for the c-th country.

Formula (9) can be represented as follows: $\max_{\substack{max \\ k_{ijc}} - \min_{k_{ijc}} k_{ijc}} k_{ijc}$

$$w_{ijct} = \frac{\gamma_{ijct}}{\Sigma_t \gamma_{ijct}} = \frac{\frac{m_t \kappa_{tijc}}{m_t \kappa_{tijc}}}{\sum_t \frac{t}{t} \frac{m_t \kappa_{tijc}}{m_t \kappa_{tijc}}} = = \left(1 - \frac{\min_t \kappa_{tijc}}{\max_t \kappa_{tijc}}\right) / \sum_t \left(1 - \frac{\min_t \kappa_{tijc}}{\max_t \kappa_{tijc}}\right)$$
(10)

So, having assessed the indicators priority for evaluating the countries' investment potential using formula (10), we arrange the results in a table format (table 4).

Table 4.	The weighted	coefficients	of the pri	iority	of indicators	for asses	sing the c	ountries'
			investme	ent po	tential			

Country Name	Name	ð	w	Country Name	Name	ð	w
Czech Republic	T1	0.30	0.0892	Romania	T1	0.45	0.1293
Czech Republic	T2	0.92	0.2704	Romania	T2	0.58	0.1677
Czech Republic	T3	0.71	0.2079	Romania	T3	0.74	0.2155
Czech Republic	T4	0.48	0.1400	Romania	T4	0.68	0.1977
Czech Republic	T5	1.00	0.2925	Romania	T5	1.00	0.2898
Ukraine	T1	0.51	0.1372	France	T1	0.13	0.0503
Ukraine	T2	0.95	0.2563	France	T2	0.38	0.1527
Ukraine	T3	0.71	0.1906	France	T3	0.67	0.2701
Ukraine	T4	0.55	0.1472	France	T4	0.31	0.1252
Ukraine	T5	1.00	0.2687	France	T5	1.00	0.4017
United Kingdom	T1	0.17	0.0598	Poland	T1	0.30	0.0883
United Kingdom	T2	0.39	0.1362	Poland	T2	0.78	0.2306
United Kingdom	T3	0.82	0.2898	Poland	T3	0.60	0.1785
United Kingdom	T4	0.46	0.1615	Poland	T4	0.70	0.2066
United Kingdom	T5	1.00	0.3527	Poland	T5	1.00	0.2960
United States	T1	0.23	0.0884	China	T1	0.06	0.0214
United States	T2	0.23	0.0856	China	T2	0.95	0.3280
United States	T3	0.57	0.2165	China	T3	0.43	0.1506
United States	T4	0.62	0.2329	China	T4	0.44	0.1534
United States	T5	1.00	0.3766	China	T5	1.00	0.3467
Slovak Republic	T1	0.34	0.0908	Germany	T1	0.17	0.0673
Slovak Republic	T2	0.86	0.2271	Germany	T2	0.54	0.2169
Slovak Republic	T3	0.86	0.2262	Germany	T3	0.50	0.2005
Slovak Republic	T4	0.72	0.1916	Germany	T4	0.29	0.1145
Slovak Republic	T5	1.00	0.2643	Germany	T5	1.00	0.4008
Spain	T1	0.25	0.0980	Estonia	T1	0.52	0.1298
Spain	T2	0.18	0.0691	Estonia	T2	0.82	0.2065
Spain	T3	0.79	0.3056	Estonia	T3	0.82	0.2066
Spain	T4	0.36	0.1397	Estonia	T4	0.82	0.2059
Spain	T5	1.00	0.3875	Estonia	T5	1.00	0.2512

Source: developed by authors.

Normalizing the input dataset by the relative method and weighing by the relative scatter method we determine the integrated index in each group by the arithmetic mean:

$$I_{jct} = \frac{\sum_{1}^{T} n_{tijc} {}^{w_{ijct}}}{T}$$
(11)

Marketing and Management of Innovations, 2019, Issue 4 http://mmi.fem.sumdu.edu.ua/en where I_{jct} – the integrated index for assessing the j-th group as a characteristic of the potential for investment of the c-th country for t-th year; T – the total number of years of the studied time frame.

The results of calculations by formula (11) for five groups are presented in tabular form (table A3–A7). **Results**. Considering the intermediate calculations of the input dataset concerning the relative normalization, defining the weight of coefficients by the relative scatter method and generalization by the arithmetic mean, formula (7) is:

$$Y_{ct} = a_0 \cdot \prod_j I_{jct}^{a_i} = a_0 \cdot I_{1ct}^{a_1} \cdot I_{2ct}^{a_2} \cdot I_{3ct}^{a_3} \cdot I_{4ct}^{a_4} \cdot I_{5ct}^{a_5}$$
(12)

To estimate the parameters of the multivariate nonlinear regression equation (12), we suggest using the method of least-squares (Kuzmenko and Kyrkach, 2014), which requires preliminary linearization:

$$lnY_{ct} = lna_0 + a_1 \cdot lnI_{1ct} + a_2 \cdot lnI_{2ct} + a_3 \cdot lnI_{3ct} + a_4 \cdot llnI_{4ct} + a_5 \cdot lnI_{5ct}$$
(13)

The introduction of symbols $lnY_{ct} = Y_{ct}^*$, $lna_0 = a_0^*$, $lnI_{1ct} = I_{1ct}^*$, $lnI_{2ct} = I_{2ct}^*$, $lnI_{3ct} = I_{3ct}^*$, $lnI_{4ct} = I_{4ct}^*$, $lnI_{5ct} = I_{5ct}^*$ let us get a linear multivariate regression equation:

$$Y_{ct}^* = a_0^* + a_1 \cdot I_{1ct}^* + a_2 \cdot I_{2ct}^* + a_3 \cdot I_{3ct}^* + a_4 \cdot I_{4ct}^* + a_5 \cdot I_{5ct}^*$$
(14)

The application of the least-squares method for estimating the parameters of the linearized regression equation (14) requires preliminary systematization of the response variable (the global foreign direct investment attractiveness index) from 2013 to 2018, explanatory variables – integrated index of groups: infrastructure, science and education, environment and human health, technology, socio-economic conditions (Table 5).

Table 5. Actual and	I predicted values o	of the global	foreign direct	investment	attractiveness	index,
	the resul	ts of interme	diate calculat	ions		

	GFICA index	Infrastructure	Science and education	Environment and human health	Technology	Socio- economic conditions	GFICA index prediction
2013	0.9630	0.8497	0.6689	0.9057	0.7390	0.7020	0.9630
2014	0.9630	0.8588	0.6706	0.9088	0.7452	0.7098	0.9630
2015	0.9630	0.8755	0.6702	0.9073	0.7562	0.7461	0.9630
2016	0.9537	0.8876	0.6716	0.9075	0.7934	0.7411	0.9537
2017	0.9537	0.9047	0.6730	0.9075	0.8454	0.7367	0.9537
2018	0.9444	0.9297	0.6745	0.9086	0.8796	0.7431	0.9444

Source: developed by authors.

To calculate the parameters in the equation (14) we used the MS Excel package, the Regression tab in Data Analysis, as a result, we obtained the following results (Table 6). Formula (12) in the case of Germany takes the following form:

$$Y_{Gt} = \exp\left(-13.1884\right) \cdot I_{1ct}^{-0.8466} \cdot I_{2ct}^{-40.9234} \cdot I_{3ct}^{28.7691} \cdot I_{4ct}^{1.6472} \cdot I_{5ct}^{0.2635}$$
(15)

We systematize in a tabular form the obtained results in the context of spatial analysis of the studied range of countries (Table 7).

investment attractiveness muck on the integrated indexes of the groups									
	Coefficients	Lower 95%	Upper 95%						
Intercept	-13.1884	-13.1884	-13.1884						
Infrastructure	-0.8466	-0.8466	-0.8466						
Science and education	-40.9234	-40.9234	-40.9234						
Environment and human health	28.7691	28.7691	28.7691						
Technology	1.6472	1.6472	1.6472						
Socio-economic conditions	0.2635	0.2635	0.2635						
Environment and human health Technology Socio-economic conditions	28.7691 1.6472 0.2635	28.7691 1.6472 0.2635	28.7691 1.6472 0.2635						

Table 6	6. The parameters	of the regression	on equation,	dependency	of global for	oreign direct
	investment attra	activeness index	on the integ	grated indexe	s of the gro	oups

Source: developed by authors.

Table 7. The parameters of regression equations, the dependency of the global foreign direct investment attractiveness index on integrated indexes of the groups within the studied range of

	countries									
	Intercent	Infrastructure	Science	Environment	Technology	Socio-				
	intercept	minastructure	education	health	reciniology	conditions				
United States	0.1397	-0.0088	0.9426	0.0135	-0.0305	-0.0073				
United Kingdom	1.8287	-0.0774	8.8417	-1.7571	0.0163	0.0954				
Germany	-13.1884	-0.8466	-40.9234	28.7691	1.6472	0.2635				
France	-0.0352	0.0088	0.4940	0.8186	-0.2652	0.1839				
Spain	-3.4944	1.0769	-10.4343	0.0216	-1.0665	-0.1907				
Estonia	-0.4696	0.7328	-1.7776	-0.3353	-0.1369	-0.0140				
Czech Republic	-0.1298	-0.1299	0.0710	1.0867	-0.0013	-0.0266				
China	17.8123	-11.4846	-0.6141	38.7841	2.9906	2.9801				
Poland	1.6158	-2.2024	2.0908	11.2415	0.2221	-0.2584				
Slovakia	-1.4284	0.8469	-1.6892	-4.3787	-0.0142	-0.0117				
Romania	1.5470	-1.6463	2.8131	12.4151	-0.2044	-1.5099				
Ukraine	5.2646	-24.1373	21.4112	-5.0143	12.7559	-1.7160				

Source: developed by authors.

In this paper, a scientific and methodological approach to assessing the country's potential for investment by adapting the Hurst exponent is proposed, which is based on intermediate calculations of Z_u depending on the year of observation and R/S on the accumulated number of observations (Table 8).

Table 8. Intermediate calculations of assessing the potential for investment as the Hurst exponent for Germany

	2013	2014	2015	2016	2017	2018		
GFICA index	0.9630	0.9630	0.9630	0.9537	0.9537	0.9444		
Z	0.0062	0.0062	0.0062	-0.0031	-0.0031	-0.0123		
n	2	3	4	5	6			
R/S	1.4142	1.8813	2.0000	1.8257	2.4495			

Source: developed by authors.

The data collected in table 8 reflects the calculation of the Hurst exponent - the degree of non-linear function, that is presented in Figure 1.

Figure 1. The dependence of the R/S indicator on the accumulated number of observations for Germany

Source: developed by authors.

The graph in Figure 1 depicts the ratio of the magnitude of cumulative deviation to the standard deviation of the time series of the global foreign direct investment country attractiveness index, and its dependence on the number of years when the accumulated effect of the created investment conditions are considered. This dependence is presented as a correlated field of points. The trend line as the nonlinear power function demonstrates the dependencies between them. The received nonlinear function allows defining the indicator of the potential for investment by determining the exponent of the variable that is the Hurst exponent. The coefficient of determination value is equal to 78% and it confirms the adequacy of the calculations. Making the same calculations as in the case of Germany, allows us to get the following data of the spatial analysis within the studied countries. (Figure 2)

Figure 2. Potential for the investment of the studied countries spatial analysis Source: developed by authors.

Thus, based on the calculations, we single out four groups of countries according to its potential for investment. So, the first group is characterized by the potential for investment less than 40% and includes the UK, Spain and Poland. That means the potential for investment under the current economic conditions is used by more than 60% in these countries. As for the UK, it should be noted that Brexit made a significant impact on the country's potential for investment. Therefore, it is characterized by the minor value of the effective indicator. For Poland, the defined measure of the potential for investment is quite reasonable, since it has been using it very actively and had a rapid economic development recently. A low value of investment potential in Spain is determined by the need to transform state policy and investment infrastructure, as for now, it does not attract external and internal investors. The next group of countries consists of Germany, China and France. For them, the potential for investment is within 40-50%. These figures indicate that the countries are using the available opportunities effectively, but they also have significant reserves to encourage investment resources in the future. The third group includes Estonia, the USA and Romania with the potential for investment between 50-60%. While Estonia and the USA economies are characterized by technological innovation and the most comfortable IT ecosystem, that under the condition of Industry 4.0, attracts investors the most. Romania with the investment potential of 59% has a low level of investment climate and insignificant use of available opportunities to attract free financial resources to the economy. The last group of countries with the highest level of potential for investment (over 60%) includes the Czech Republic, Ukraine and the Slovak Republic. For the Czech Republic, the level of 60% demonstrates missed opportunities that must be used and therefore significant economic effect will be achieved. On top of that, all the necessary elements of an attractive investment climate exist in the country. In turn, Ukraine and the Slovak Republic must go through significant political, infrastructural and financial transformations to turn the existing potential into the real attracted financial flows into the economy. Thus, we can conclude that the calculations are fully consistent with the current economic conditions and confirm the adequacy of the proposed methodology for assessing the potential for investment.

Conclusions. Thus, the developed methodology for assessing the country's potential to attract the investments includes four stages: 1) dividing the set of input indicators into five groups: infrastructure, science and education, environment and human health, technology, socio-economic conditions; 2) calculation of the integrated index for each group by normalizing the input dataset by the relative method, narrowing it using the relative scatter method and generalization with the arithmetic mean; 3) the development of the five-factor nonlinear regression model of the dependence of the global foreign direct investment attractiveness index on five integrated indexes of the groups with the Cobb-Douglas function; 4) assessment of the country potential to attract the investments by adapting the Hurst exponent. The obtained quantitative characteristic of the country potential for investment allows us to assess the scope of opportunities for the further development of economic processes and establish the effective encouragement mechanism for directing the investment resources into the country.

References

Agnihotri, A.N., Arora, S.H. Study of Linkages Between Outward Foreign Direct Investment (OFDI) and Domestic Economic Growth: an Indian Perspective. Financial Markets, Institutions and Risks, 2019, 3(1), pp. 43-49.

Bilan, Y., Rubanov, P., Vasylieva, T., Lyeonov, S. The influence of industry 4.0 on financial services: Determinants of alternative finance development. Polish Journal of Management Studies, 2019, 19(1), pp. 70-93.

Blonigen, B. A. Foreign direct investment. Foreign Direct Investment (pp. 1–538). World Scientific Publishing Co., 2019 https://doi.org/10.1142/11176

Blonigen, B. A., & Piger, J. Determinants of foreign direct investment. In Foreign Direct Investment (pp. 3–54). World Scientific Publishing Co., 2019. https://doi.org/10.1142/9789813277014_0001

Boyko, A.O. Insurance company portfolio optimization based on reinsurance operations usage. Actual Problems of Economics, 2011, № 1(115), pp. C. 160–169

Cieślik, A., & Hien Tran, G. Determinants of outward FDI from emerging economies. Equilibrium. Quarterly Journal of Economics and Economic Policy, 2091, 14(2), pp. 209-231. https://doi.org/10.24136/eq.2019.010

Dierkes, M., Erner, C., & Zeisberger, S. Investment horizon and the attractiveness of investment strategies: A behavioral approach. Journal of Banking and Finance, 2010, 34(5), pp. 1032–1046. https://doi.org/10.1016/j.jbankfin.2009.11.003

Fagerberg, J., Scholec, M., Verspagen, B. (2010). The Role of Innovation in Development. Review of Economics and Institutions. 1. 10.5202/rei.v1i2.15.

Goncharuk, A.G., Karavan, S. The investment attractiveness evaluation: methods and measurement features. Polish Journal of Management Studies, 2013, (7), pp. 161-167.

Hlaváček, P., Janáček, J. The influence of foreign direct investment and public incentives on the socio-economic development of regions: an empirical study from the czech republic. E a M: Ekonomie a Management, 2019, 22(3), pp. 4-19. https://dx.doi.org/10.15240/tul/001/2019-3-001

Hrytsenko, L., Shevchenko, H., Daher, K. The economic optimization of investment into the territorial development of recreation. SocioEconomic Challenges, 2017, 1(2), pp. 59-79. http://doi.org/10.21272/sec.1(2).59-79.2017

Kharlamova, G. Investment attractiveness of Ukrainian regions: rating assessment and marketing promotion. Journal of International Studies, 2014, 7(1), pp. 9-26. http://doi.org/10.14254/2071-8330.2014/7-1/1

Kotikova, S., & Vavrek, R. Determining the size of technological gap between local firms and foreign direct investment at regional level. Journal of International Studies, 2019, 12(3), pp. 48-63.

Kozmenko, O., Roienko, V. Evaluation and use of indicators of insurance companies' investment activities. Investment Management and Financial Innovations, 2013, 10(3), pp. 98-105.

Kuzmenko, O., Kyrkach, S. The use of regression analysis in the financial planning of banks, mathematical formalization of the stages of financial planning in banks. Banks and Bank Systems, 2014, 9(1), pp. 120-126

Leonov, S.V., Frolov, S., Plastun, V. Potential of institutional investors and stock market development as an alternative to households' savings allocation in banks. Economic Annals-XXI, 2014, 11-12, pp. 65-68.

Lobanova, J., Kračun, D., Kavkler, A. Effects of cross-border mergers and acquisitions on GDP per capita and domestic investment in transition countries. Journal of Business Economics and Management, 2018, 19(1), pp. 124-137. https://doi.org/10.3846/16111699.2017.1408677

Marcel, D. T. A. M. Impact of the Foreign Direct Investment on Economic growth on the Re-public of Benin. Financial Markets, Institutions and Risks, 2019, 3(2), pp. 69-78. http://doi.org/10.21272/fmir.3(2).69-78.2019.

Nazarczuk, J. M., & Krajewska, A. Local determinants of foreign direct investment in Poland: the role of relative distance. Equilibrium. Quarterly Journal of Economics and Economic Policy, 2018, 13(1), pp. 73-88.

Nguedie, Y. H. N. Corruption, Investment and Economic Growth in Developing Countries: A Panel Smooth Transition Regression Approach. SocioEconomic Challenges, 2018, 2(1), pp. 63-68.

Ohotina, Å., Ignatjeva, S., Lavrinenko, O., Lonska J. Socioeconomic security as a factor of the investment climate in the region. Journal of Security and Sustainability, 2018, Issues 7(3), pp. 427–438.

Simionescu, M. Effects of European economic integration on foreign direct investment: The case of Romania. Economics and Sociology, 2018, 11(4), pp. 96-105. http://doi.org/10.14254/2071-789X.2018/11-4/6

Táncošová, J. The role of foreign direct investment in the economy of Slovakia. Entrepreneurship and Sustainability, 2019, Issues 6(4), pp. 2127-2135. https://doi.org/10.9770/jesi.2019.6.4(40)

lable A.1. Dynamics of the global foreign direct investment attractiveness index, country ranking									
GFICA index	2013	2014	2015	2016	2017	2018			
United States	1	1	1	1	1	1			
United Kingdom	3	2	2	3	3	3			
Germany	5	5	5	6	6	7			
France	15	15	14	15	15	15			
Spain	22	22	21	20	20	21			
Estonia	24	23	23	22	24	24			
Czech Republic	25	25	25	25	25	25			
China	34	33	35	30	28	27			
Poland	37	37	36	33	32	32			
Slovakia	39	38	40	39	39	39			
Romania	48	50	45	44	46	46			
Ukraine	68	62	61	59	60	58			

Annexes

the state of the state of the state

Source: A Global Foreign Direct Investment Country Attractiveness Index.

Country Name	Name	2013	2014	2015	2016	2017	2018
1	2	3	4	5	6	7	8
Czech Republic	T1	0.97	0.98	0.98	0.98	0.98	0.99
Czech Republic	T2	0.82	0.83	0.84	0.86	0.87	0.90
Czech Republic	Т3	0.84	0.84	0.84	0.83	0.84	0.85
Czech Republic	T4	0.89	0.89	0.89	0.88	0.87	0.88
Czech Republic	T5	0.30	0.33	0.36	0.61	0.76	0.88
Ukraine	T1	0.95	0.91	0.90	0.91	0.91	0.91
Ukraine	T2	0.76	0.87	0.92	0.94	0.96	1.00
Ukraine	Т3	0.51	0.52	0.50	0.52	0.51	0.52
Ukraine	T4	0.77	0.78	0.80	0.77	0.75	0.75
Ukraine	T5	0.15	0.16	0.19	0.39	0.47	0.53
United Kingdom	T1	0.99	0.99	0.98	0.98	0.98	0.98
United Kingdom	T2	0.85	0.86	0.86	0.86	0.86	0.86
United Kingdom	Т3	0.55	0.56	0.56	0.57	0.56	0.55
United Kingdom	T4	0.93	0.92	0.92	0.93	0.92	0.92
United Kingdom	T5	0.33	0.35	0.38	0.49	0.67	0.73
United States	T1	0.96	0.96	0.96	0.96	0.96	0.96
United States	T2	0.88	0.87	0.87	0.88	0.88	0.88
United States	Т3	0.76	0.77	0.77	0.78	0.78	0.77
United States	T4	0.86	0.86	0.87	0.88	0.81	0.80
United States	T5	0.36	0.38	0.41	0.52	0.75	1.00
Slovak Republic	T1	0.98	0.97	0.98	0.98	0.98	0.98
Slovak Republic	T2	0.84	0.84	0.84	0.88	0.90	0.92
Slovak Republic	Т3	0.88	0.88	0.87	0.87	0.87	0.88
Slovak Republic	T4	0.79	0.79	0.79	0.79	0.80	0.81
Slovak Republic	T5	0.27	0.30	0.34	0.45	0.55	0.65
Spain	T1	0.96	0.96	0.96	0.96	0.96	0.96
Spain	T2	0.94	0.94	0.94	0.94	0.94	0.94
Spain	Т3	0.36	0.36	0.38	0.39	0.40	0.39
Spain	T4	0.81	0.80	0.80	0.80	0.80	0.80
Spain	T5	0.15	0.16	0.19	0.29	0.43	0.51
Romania	T1	0.95	0.95	0.94	0.94	0.94	0.95
Romania	T2	0.92	0.93	0.94	0.96	0.97	0.98
Romania	Т3	0.64	0.64	0.63	0.62	0.61	0.60
Romania	T4	0.70	0.72	0.74	0.76	0.77	0.77
Romania	T5	0.18	0.20	0.22	0.42	0.61	0.66

Continued Table A.2

J. Kasaeva. Developing the Methodology of Assessing	the Potential of Countries to Attract Foreign Direct Investment
---	---

1	2	3	4	5	6	7	8
France	T1	0.99	0.99	0.99	0.99	0.99	0.99
France	T2	0.83	0.83	0.83	0.83	0.83	0.82
France	Т3	0.57	0.57	0.58	0.58	0.57	0.57
France	T4	0.97	0.97	0.97	0.97	0.95	0.95
France	T5	0.17	0.20	0.24	0.40	0.55	0.63
Poland	T1	0.96	0.95	0.95	0.95	0.95	0.95
Poland	T2	0.77	0.80	0.82	0.84	0.84	0.86
Poland	Т3	0.76	0.78	0.79	0.77	0.77	0.77
Poland	T4	0.74	0.75	0.75	0.75	0.74	0.74
Poland	T5	0.24	0.26	0.29	0.38	0.50	0.66
China	T1	0.99	0.99	0.99	0.99	0.99	0.99
China	T2	0.71	0.74	0.79	0.81	0.82	0.87
China	Т3	0.98	0.97	0.98	0.98	0.98	0.98
China	T4	0.96	0.95	0.96	0.95	0.95	0.95
China	T5	0.04	0.05	0.06	0.08	0.14	0.18
Germany	T1	1.00	1.00	1.00	1.00	1.00	1.00
Germany	T2	0.83	0.83	0.84	0.86	0.86	0.87
Germany	Т3	0.68	0.68	0.68	0.69	0.69	0.69
Germany	T4	0.92	0.92	0.92	0.92	0.90	0.90
Germany	T5	0.27	0.30	0.34	0.50	0.77	0.94
Estonia	T1	0.90	0.91	0.90	0.91	0.91	0.91
Estonia	T2	0.82	0.82	0.82	0.83	0.85	0.87
Estonia	Т3	0.82	0.83	0.82	0.83	0.78	0.77
Estonia	T4	0.78	0.80	0.80	0.78	0.86	0.85
Estonia	T5	0.39	0.43	0.47	0.64	0.82	0.93

Table A.3. Dynamics of the integrated index for assessment the country potential for investment
within aroun of 'technology'

		J •		0,		
	2013	2014	2015	2016	2017	2018
Czech Republic	0.7643	0.7729	0.7827	0.8334	0.8651	0.8965
Ukraine	0.6275	0.6487	0.6634	0.7045	0.7205	0.7410
United Kingdom	0.7280	0.7339	0.7408	0.7670	0.7996	0.8094
United States	0.7640	0.7694	0.7797	0.8036	0.8348	0.8819
Slovak Republic	0.7548	0.7562	0.7625	0.7926	0.8212	0.8503
Spain	0.6423	0.6461	0.6527	0.6755	0.7039	0.7184
Romania	0.6785	0.6861	0.6944	0.7410	0.7798	0.7922
France	0.7055	0.7118	0.7208	0.7517	0.7785	0.7917
Poland	0.6938	0.7090	0.7197	0.7375	0.7598	0.7969
China	0.7377	0.7413	0.7552	0.7630	0.7748	0.7933
Germany	0.7390	0.7452	0.7562	0.7934	0.8454	0.8796
Estonia	0.7435	0.7571	0.7607	0.7962	0.8418	0.8667
Standotklon	0.04603	0.04367	0.04315	0.04459	0.05038	0.05705
Rozmax	0.1368	0.1268	0.1300	0.1579	0.1612	0.1781

Table A.4. Dynamics of the integrated index for assessment the country potential for investment
within group of 'socio-economic conditions'

	2013	2014	2015	2016	2017	2018
1	2	3	4	5	6	7
Czech Republic	0.7000	0.7838	0.7754	0.7962	0.8152	0.8020
Ukraine	0.7259	0.6692	0.7115	0.7767	0.8518	0.8446
United Kingdom	0.7262	0.7582	0.7439	0.7953	0.7699	0.7430
United States	0.7090	0.7417	0.7546	0.7043	0.7366	0.7287
Slovak Republic	0.7016	0.6395	0.7404	0.7875	0.7805	0.6460
Spain	0.6952	0.7383	0.7842	0.7763	0.7087	0.7565

Continued Table A.4

1	2	3	4	5	6	7
Romania	0.7855	0.8036	0.8012	0.8053	0.8014	0.8020
France	0.6974	0.6726	0.7376	0.7146	0.7378	0.7462
Poland	0.6795	0.7851	0.7894	0.7619	0.7782	0.7808
China	0.8217	0.8261	0.8230	0.8134	0.7891	0.7897
Germany	0.7020	0.7098	0.7461	0.7411	0.7367	0.7431
Estonia	0.7871	0.7941	0.6317	0.7755	0.8218	0.8013
standotklon	0.045194	0.059599	0.049525	0.034596	0.04192	0.050573
Rozmax	0.1422	0.1866	0.1913	0.1091	0.1431	0.1986

Source: developed by authors.

Table A.5. Dynamics of the integrated index for assessment the country potential for investment within group of 'infrastructures'

		~ .				
	2013	2014	2015	2016	2017	2018
Czech Republic	0.7211	0.7233	0.7165	0.7223	0.7281	0.7516
Ukraine	0.8305	0.8321	0.8363	0.8398	0.8428	0.8522
United Kingdom	0.7606	0.7644	0.7147	0.7173	0.7180	0.7216
United States	0.6286	0.6213	0.6313	0.6365	0.6367	0.6523
Slovak Republic	0.7349	0.7422	0.7490	0.7548	0.7594	0.7715
Spain	0.6371	0.6398	0.6431	0.6484	0.6519	0.6704
Romania	0.6021	0.6118	0.6171	0.6192	0.6278	0.6486
France	0.6502	0.6511	0.6478	0.6506	0.6581	0.6720
Poland	0.8238	0.8269	0.8306	0.8333	0.8359	0.8538
China	0.8366	0.8392	0.8430	0.8467	0.8497	0.8632
Germany	0.8497	0.8588	0.8755	0.8876	0.9047	0.9297
Estonia	0.6097	0.6111	0.6142	0.6158	0.6086	0.6181
standotklon	0.095946	0.09717	0.098263	0.099553	0.102083	0.103236
Rozmax	0.2476	0.2477	0.2613	0.2717	0.2961	0.3116

Source: developed by authors.

Table A.6. Dynamics of the integrated index for assessment the country potential for investment
within group of 'environment and human health'

		up 01 0111110				
	2013	2014	2015	2016	2017	2018
Czech Republic	0.8677	0.8704	0.8681	0.8689	0.8717	0.8737
Ukraine	0.8650	0.8605	0.8485	0.8514	0.8593	0.8620
United Kingdom	0.9005	0.9046	0.9039	0.9038	0.9082	0.9116
United States	0.9230	0.9269	0.9292	0.9322	0.9345	0.9369
Slovak Republic	0.8577	0.8543	0.8517	0.8600	0.8608	0.8633
Spain	0.9233	0.9317	0.9317	0.9438	0.9463	0.9515
Romania	0.8285	0.8301	0.8342	0.8376	0.8371	0.8410
France	0.9482	0.9581	0.9552	0.9632	0.9664	0.9688
Poland	0.8510	0.8535	0.8543	0.8572	0.8585	0.8610
China	0.6094	0.6102	0.6101	0.6124	0.6143	0.6166
Germany	0.9057	0.9088	0.9073	0.9075	0.9075	0.9086
Estonia	0.8836	0.8820	0.8979	0.9005	0.9007	0.9069
standotklon	0.087299	0.089013	0.089218	0.090198	0.090376	0.090651
Rozmax	0.3388	0.3479	0.3451	0.3508	0.3521	0.3521

Source: developed by authors.

	WILIIII	group or 30		acation		
	2013	2014	2015	2016	2017	2018
Czech Republic	0.7594	0.7592	0.7761	0.7701	0.7731	0.7763
Ukraine	0.7539	0.7398	0.7359	0.7204	0.7199	0.7182
United Kingdom	0.7960	0.7972	0.7968	0.7953	0.7963	0.7972
United States	0.8409	0.8410	0.8418	0.8421	0.8436	0.8449
Slovak Republic	0.7113	0.7168	0.7372	0.7151	0.7154	0.7165
Spain	0.7342	0.7333	0.7313	0.7287	0.7273	0.7278
Romania	0.6859	0.6870	0.6949	0.6931	0.6934	0.6935
France	0.8461	0.8470	0.8461	0.8453	0.8463	0.8466
Poland	0.7315	0.7344	0.7386	0.7364	0.7373	0.7388
China	0.4605	0.4820	0.4970	0.5147	0.5217	0.5467
Germany	0.6689	0.6706	0.6702	0.6716	0.6730	0.6745
Estonia	0.7517	0.7466	0.7468	0.7385	0.7411	0.7433
standotklon	0.100317	0.09478	0.091386	0.087007	0.085854	0.080747
Rozmax	0.3856	0.3650	0.3491	0.3306	0.3245	0.2999

Table A.7. Dynamics of the integrated index for assessment the country potential for investment
within group of 'science and education'

Source: developed by authors.

Ю. В. Касаєва, Сумський державний університет (Україна).

Побудова моделі оцінювання інвестиційного потенціалу країни

У статті визначено актуальність проведення адекватного оцінювання інвестиційного потенціалу країни з метою активізації трансформаційних процесів в усіх сферах економічного та соціального життя населення. Запропоновано науково-методичний підхід до оцінювання інвестиційного потенціалу країни шляхом адаптації метрики Херста, яка ґрунтується на розмаху накопиченого відхилення і відображує економічну сутність поняття потенціалу. В якості часового ряду обчислення метрики Херста використано теоретичні (прогнозні) значення глобального індексу привабливості прямих іноземних інвестицій, визначені за допомогою економетричної моделі залежності результативної ознаки від п'яти інтегральних показників груп: інфраструктура, освіта та наука, екологія та здоров'я людини, технології, соціально-економічні умови. Регресійну нелінійну п'яти факторну модель залежності глобального індексу привабливості прямих іноземних інвестицій від п'яти інтегральних показників груп запропоновано представити як функцію типу функції Кобба-Дугласа. Інтегральні показники в розрізі кожної групи визначено шляхом нормалізації відносним методом вхідної інформаційної бази дослідження з подальшим зваженням методом відносного розкиду та узагальнення методом середньої арифметичної. Практичні розрахунки проводились для таких країн, як США, Великобританія, Німеччина, Франція, Іспанія, Естонія, Чеська Республіка, Китай, Польща, Словаччина, Румунія, Україна. Встановлено, що на даний момент найбільшим інвестиційним потенціалом володіє Словаччина, Україна та Чеська Республіка, для яких значення даного показника більше 60%. В свою чергу, найменший інвестиційний потенціал характерний для Великобританії, Іспанії та Польщі, для яких невикористані можливості в залученні інвестиційних ресурсів знаходяться на рівні менше ніж 40%.

Ключові слова: інвестиційний потенціал, інвестиційна привабливість, метрика Херста, прямі іноземні інвестиції, регресійний аналіз, функція Кобба-Дугласа.

Manuscript received: 20.09.2019. © The author(s) 2019. This article is published with open access at Sumy State University.