AI in Marketing Management: Executive Perspectives from Companies
- University of Malaga, Spain
* Corresponding author
Pages: 42–55
Received: 31 July 2024
Revised: 20 December 2024
Accepted: 26 December 2024
Abstract
The integration of artificial intelligence (AI) in marketing and business communication is transforming corporate strategies, offering significant opportunities while presenting notable challenges. This study examines the factors influencing AI adoption by companies, focusing on the perspectives of CEOs. Using a survey of 409 senior executives from Spanish firms, this research develops an advanced framework based on the unified theory of acceptance and use of technology (UTAUT), enriched with additional constructs.The findings reveal that effort expectancy and facilitating conditions are critical drivers of AI adoption. AI aversion, reflecting concerns about distrust, complexity, and ethical risks, emerges as a significant barrier, particularly for CEOs of smaller firms, where its impact is notably stronger. Relative advantage and perceived value also influence adoption intentions, albeit to a lesser degree, indicating the perceived benefits and tangible outcomes of AI in improving processes such as segmentation, automation, and predictive analytics. Key differences arise between companies of varying revenue sizes: smaller firms exhibit greater aversion to AI, whereas larger organisations focus on maximizing their strategic benefits to drive innovation. These insights highlight the importance of tailored approaches, such as financial incentives, pilot programs, and targeted training, to reduce aversion and encourage adoption across diverse organizational contexts. This study contributes to the academic discourse by extending the UTAUT framework to address emerging challenges in AI adoption. Practically, it provides actionable strategies for business leaders to address human-centric and technological barriers, fostering a more efficient and data-driven marketing process. By offering a comprehensive understanding of the enablers and barriers to AI adoption, this research equips companies to harness AI’s full potential, enhancing their competitive advantage in an increasingly digital landscape.
Keywords: artificial intelligence; marketing; business communication; AI adoption; emerging technologies.
How to Cite: Maldonado-Canca, L. A., Cabrera-Sánchez, J. P., Gonzalez-Robles, E. M. & Casado-Molina, A. M. (2024). AI in Marketing Management: Executive Perspectives from Companies. Marketing and Management of Innovations, 15(4), 42–55. https://doi.org/10.21272/mmi.2024.4-04
Abstract Views
PDF Downloads
This work is licensed under a Creative Commons Attribution 4.0 International License
References
- Agrawal, K. P. (2023). Towards adoption of generative AI in organizational settings. Journal of Computer Information Systems, 64(5), 636–651. [Google Scholar] [CrossRef]
- Ahmadi, H., Nilashi, M., Shahmoradi, L., & Ibrahim, O. (2017). Hospital Information System adoption: Expert perspectives on an adoption framework for Malaysian public hospitals. Computers in Human Behavior, 67, 161–189. [Google Scholar] [CrossRef]
- Akdim, K., & Casalo, L. V. (2023). Perceived value of AI-based recommendations service: the case of voice assistants. Service Business, 17(1), 81–112. [Google Scholar] [CrossRef]
- Al Hleewa, S. O., & Al Mubarak, M. (2023). Success Factors of Using Artificial Intelligence. In Technological Sustainability and Business Competitive Advantage(pp. 169-184). Cham: Springer International Publishing. [Google Scholar] [CrossRef]
- Alserr, N., & Salepçioglu, M. A. (2023). Success Factors Affecting the Adoption of Artificial Intelligence and the Impacts of on Organizational Excellence: A Case to be Studied in the MENA Region, and Turkey in Particular. Lecture Notes in Networks and Systems, 485, 3–16. [Google Scholar] [CrossRef]
- AlSheibani, S., Cheung, Y., & Messom, C. (2020). Rethinking the Competitive Landscape of Artificial Intelligence. Proceedings of the Annual Hawaii International Conference on System Sciences, 2020-January, 5861–5870. [Google Scholar] [CrossRef]
- Alt, R. (2020). Evolution and perspectives of electronic markets. Electronic Markets, 30(1), 1–13. [Google Scholar] [CrossRef]
- Andrews, J. E., Ward, H., & Yoon, J. W. (2021). UTAUT as a Model for Understanding Intention to Adopt AI and Related Technologies among Librarians. The Journal of Academic Librarianship, 47(6), 102437. [Google Scholar] [CrossRef]
- Ball, D., Coelho, P. S., & Vilares, M. J. (2006). Service personalization and loyalty. Journal of Services Marketing, 20(6), 391–403. [Google Scholar] [CrossRef]
- Banh, L., & Strobel, G. (2023). Generative artificial intelligence. Electronic Markets, 33(1), 1–17. [Google Scholar] [CrossRef]
- Brynjolfsson, E., & Mcafee, A. (2017). Artificial intelligence, for real. Harvard Business Review, 1, 1–31. [Google Scholar]
- Cabrera-Sánchez, J. P., Villarejo-Ramos, Á. F., Liébana-Cabanillas, F., & Shaikh, A. A. (2021). Identifying relevant segments of AI applications adopters – Expanding the UTAUT2’s variables. Telematics and Informatics, 58, Article 101529. [Google Scholar] [CrossRef]
- Cardon, P., Fleischmann, C., Aritz, J., Logemann, M., & Heidewald, J. (2023). The challenges and opportunities of AI-assisted writing: Developing AI literacy for the AI age. Business and Professional Communication Quarterly, 86(3), 257–295. [Google Scholar] [CrossRef]
- Castelo, N., Bos, M. W., & Lehmann, D. R. (2019). Task-dependent algorithm aversion. Journal of Marketing Research, 56(5), 809–825. [Google Scholar] [CrossRef]
- Chatterjee, S., Rana, N. P., Khorana, S., Mikalef, P., & Sharma, A. (2021). Assessing Organizational Users’ Intentions and Behavior to AI Integrated CRM Systems: a Meta-UTAUT Approach. Information Systems Frontiers, 25(4), 1299–1313. [Google Scholar] [[CrossRef]]
- Chow, C. S. K., Zhan, G., Wang, H., & He, M. (2023). Artificial intelligence (AI) adoption: An extended compensatory level of acceptance. Journal of Electronic Commerce Research, 24(1), 84–106. [Google Scholar]
- Davenport, T., & Harris, J. (2017). Competing on analytics: Updated, with a new introduction: The new science of winning. Harvard Business Press. [Google Scholar]
- Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003. [Google Scholar]
- Dhar, P. (2020). The carbon impact of artificial intelligence. Nature Machine Intelligence, 2(8), 423–425. [Google Scholar] [CrossRef]
- Dietvorst, B. J., Simmons, J. P., & Massey, C. (2015). Algorithm aversion: People erroneously avoid algorithms after seeing them err. Journal of Experimental Psychology: General, 144(1), 114–126. [Google Scholar] [CrossRef]
- Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., … Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agendas for research, practice and policy. International Journal of Information Management, 57, 101994. [Google Scholar] [CrossRef]
- Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2019). Re-examining the unified theory of acceptance and use of technology (UTAUT): Towards a revised theoretical model. Information Systems Frontiers, 21, 719–734. [Google Scholar] [CrossRef]
- Emon, M. M. H., Hassan, F., Nahid, M. H., & Rattanawiboonsom, V. (2023). Predicting Adoption Intention of Artificial Intelligence. AIUB Journal of Science and Engineering (AJSE), 22(2), 189–199. [Google Scholar] [CrossRef]
- Falk, R. F., & Miller, N. B. (1992). A primer for soft modelling. University of Akron Press. [Google Scholar]
- Fernández, D. A., & Rodríguez, M. B. (2022). Artificial intelligence: A reappraisal. Documentos de Trabajo de La Facultad de Ciencias Economicas y Empresariales, 1. [Google Scholar]
- Galaz, V., Centeno, M. A., Callahan, P. W., Causevic, A., Patterson, T., Brass, I., … & Levy, K. (2021). Artificial intelligence, systemic risks, and sustainability. Technology in Society, 67, Article [Google Scholar][CrossRef]
- Gansser, O. A., & Reich, C. S. (2021). A new acceptance model for artificial intelligence with extensions to UTAUT2: An empirical study in three segments of application. Technology in Society, 65, Article 101535. [Google Scholar] [CrossRef]
- Getchell, K. M., Carradini, S., Cardon, P. W., Fleischmann, C., Ma, H., Aritz, J., & Stapp, J. (2022). Artificial intelligence in business communication: The changing landscape of research and teaching. Business and Professional Communication Quarterly, 85(1), 7–33. [Google Scholar] [CrossRef]
- Güngör, H. (2020). Creating Value with Artificial Intelligence: A Multistakeholder Perspective. Journal of Creating Value, 6(1), 72–85. [Google Scholar] [CrossRef]
- Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). An introduction to structural equation modelling. Partial least squares structural equation modelling (PLS-SEM) using R: a workbook, 1–29. [Google Scholar]
- Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139-152. [Google Scholar]
- Haleem, A., Javaid, M., Asim Qadri, M., Pratap Singh, R., & Suman, R. (2022). Artificial intelligence (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks, 3, 119–132. [Google Scholar] [CrossRef]
- Hannig, U., & Seebacher, U. (2023). Marketing and Sales Automation: Basics, Implementation, and Applications. Springer Nature. [Google Scholar]
- Hasija, A., & Esper, T. L. (2022). In artificial intelligence (AI) we trust: A qualitative investigation of AI technology acceptance. Journal of Business Logistics, 43(3), 388–412. [Google Scholar] [CrossRef]
- Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modelling. Journal of the Academy of Marketing Science, 43(1), 115–135. [Google Scholar] [CrossRef]
- Hermann, E. (2022). Leveraging artificial intelligence in marketing for social good—An ethical perspective. Journal of Business Ethics, 179(1), 43–61. [Google Scholar] [CrossRef]
- Hopkins, E. (2022). Machine Learning Tools, Algorithms, and Techniques. Journal of Self-Governance and Management Economics, 10(1), 43–55. [Google Scholar]
- Huang, M. H., & Rust, R. T. (2018). Artificial Intelligence in Service. Journal of Service Research, 21(2), 155–172. [Google Scholar][CrossRef]
- Huang, M. H., & Rust, R. T. (2021). Engaged to a Robot? The Role of AI in Service. Journal of Service Research, 24(1), 30–41. [Google Scholar] [CrossRef]
- Huang, M. H., & Rust, R. T. (2022). A Framework for Collaborative Artificial Intelligence in Marketing. Journal of Retailing, 98(2), 209–223. [Google Scholar] [CrossRef]
- Iyer, P., & Bright, L. F. (2024). Navigating a paradigm shift: Technology and user acceptance of big data and artificial intelligence among advertising and marketing practitioners. Journal of Business Research, 180, Article 114699. [Google Scholar] [CrossRef]
- Jain, R., Garg, N., & Khera, S. N. (2022). Adoption of AI-enabled tools in social development organizations in India: An extension of UTAUT model. Frontiers in Psychology, 13, Article 893691. [Google Scholar] [CrossRef]
- Jameel, A. S., Harjan, S. A., & Ahmad, A. R. (2023). Behavioral intentions to use artificial intelligence among managers in small and medium enterprises. AIP Conference Proceedings, 2814(1), 020006. [Google Scholar] [CrossRef]
- Katebi, A., Homami, P., & Najmeddin, M. (2022). Acceptance model of precast concrete components in building construction based on Technology Acceptance Model (TAM) and Technology, Organization, and Environment (TOE) framework. Journal of Building Engineering, 45, Article 103518. [Google Scholar] [CrossRef]
- Kawaguchi, K. (2021). When will workers follow an algorithm? A field experiment with a retail business. Management Science, 67(3), 1670–1695. [Google Scholar] [CrossRef]
- Khan, M., Parvaiz, G. S., Bashir, N., Imtiaz, S., & Bae, J. (2022). Students’ key determinant structure towards educational technology acceptance at universities, during COVID 19 lockdown: Pakistani perspective. Cogent Education, 9(1), 19 [Google Scholar] [CrossRef]
- Kim, H.-J. (2023). A study on the intentions of ChatGPT users using the extended UTAUT model. Journal of Digital Contents Society, 24, 1465–1473. [Google Scholar] [CrossRef]
- Kleijnen, M., de Ruyter, K., & Wetzels, M. (2007). An assessment of value creation in mobile service delivery and the Kmecovamoderating role of time consciousness. Journal of Retailing, 83(1), 33–46. [Google Scholar] [CrossRef]
- Kmecova, I., & Juracka, D. (2023). Competences of managers and executives across economic sectors. Marketing i menedžment innovacij, 14(4), 128–139. [Google Scholar] [CrossRef]
- Komiak, S. Y. X., & Benbasat, I. (2006). The effects of personalization and familiarity on trust and adoption of recommendation agents. MIS Quarterly: Management Information Systems, 30(4), 941–960. [Google Scholar] [CrossRef]
- Kuberkar, S., & Kumar Singhal, T. (2020). Factors Influencing Adoption Intention of AI Powered Chatbot for Public Transport Services within a Smart City. International Journal on Emerging Technologies, 11(3), 948–958. [Google Scholar]
- Kurup, S., & Gupta, V. (2022). Factors Influencing the AI Adoption in Organizations. Metamorphosis, 21(2), 129–139. [Google Scholar][CrossRef]
- Lee, C. C., Lin, S. P., Yang, S. L., Tsou, M. Y., & Chang, K. Y. (2013). Evaluating the influence of perceived organizational learning capability on user acceptance of information technology among operating room nurse staff. Acta Anaesthesiologica Taiwanica, 51(1), 22–27. [Google Scholar] [CrossRef]
- Li, P. P., Bai, Y., & Xi, Y. (2012). The Contextual Antecedents of Organizational Trust: A Multidimensional Cross-level Analysis. Management and Organization Review, 8(2), 371–396. [Google Scholar] [CrossRef]
- Lin, H. C., Ho, C. F., & Yang, H. (2022). Understanding adoption of artificial intelligence-enabled language e-learning system: An empirical study of UTAUT model. International Journal of Mobile Learning and Organization, 16(1), 74–94. [Google Scholar] [CrossRef]
- Lin, K. Y., & Lu, H. P. (2015). Predicting mobile social network acceptance based on mobile value and social influence. Internet Research, 25(1), 107–130. [Google Scholar] [CrossRef]
- Lowrey, A. (2023). How ChatGPT will destabilize white-collar work. The Atlantic, 20. [Google Scholar]
- Mahmud, H., Islam, A. K. M. N., Ahmed, S. I., & Smolander, K. (2022). What influences algorithmic decision-making? A systematic literature review on algorithm aversion. Technological Forecasting and Social Change, 175, Article 121390. [Google Sholar] [CrossRef]
- Maldonado-Canca, L. A., Casado-Molina, A. M., Cabrera-Sánchez, J. P., & Bermúdez-González, G. (2024). Beyond the post: an SLR of enterprise artificial intelligence in social media. Social Network Analysis and Mining, 14(1), Article 219. [Google Scholar] [CrossRef]
- Mcafee, A., & Brynjolfsson, E. (2012). Big Data: The Management Revolution. [Google Scholar]
- Mogaji, E., Farquhar, J. D., van Esch, P., Durodié, C., & Perez-Vega, R. (2022). Guest editorial: Artificial intelligence in financial services marketing. International Journal of Bank Marketing, 40(6), 1097–1101. [Google Scholar] [CrossRef]
- Mogaji, E., Soetan, T. O., & Kieu, T. A. (2020). The implications of artificial intelligence on the digital marketing of financial services to vulnerable customers. Australasian Marketing Journal, 29(3), 235–242. [Google Scholar] [CrossRef]
- Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information systems research, 2(3), 192–222. [Google Scholar] [CrossRef]
- Nascimento, A. M., da Cunha, M. A. V. C., de Souza Meirelles, F., Scornavacca Jr, E., & De Melo, V. V. (2018). A Literature Analysis of Research on Artificial Intelligence in Management Information System (MIS). In AMCIS. [Google Scholar]
- Nazareno, L., & Schiff, D. S. (2021). The impact of automation and artificial intelligence on worker well-being. Technology in Society, 67, 101679. [Google Scholar] [CrossRef]
- Nazir, S., Khadim, S., Ali Asadullah, M., & Syed, N. (2023). Exploring the influence of artificial intelligence technology on consumer repurchase intention: The mediation and moderation approach. Technology in Society, 72, Article [Google Scholar] [CrossRef]
- Nesterenko, V., & Olefirenko, O. (2023). The impact of AI development on the development of marketing communications. Marketing i menedžment innovacij, 14(1), 169–181. [Google Scholar] [CrossRef]
- Nunnally, J. C. (1978). Psychometric Theory: 2d Ed. McGraw-Hill. [Google Scholar]
- Oliveira, T., Thomas, M., & Espadanal, M. (2014). Assessing the determinants of cloud computing adoption: An analysis of the manufacturing and services sectors. Information & Management, 51(5), 497–510. [Google Scholar] [CrossRef]
- Ontsi – Red.es. (2023, February). Uso de inteligencia artificial y big data en las empresas españolas. [Link]
- Owen Jr, D. M. (2015). Computer-Mediated Communication Acceptance as a Focus Group Methodology: Applicability of the UTAUT Framework to Executive Decision Makers. Wilmington University (Delaware) [Google Scholar]
- Pan, Y., Froese, F., Liu, N., Hu, Y., & Ye, M. (2022). The adoption of artificial intelligence in employee recruitment: The influence of contextual factors. The International Journal of Human Resource Management, 33(6), 1125–1147. [Google Scholar] [CrossRef]
- Paschen, J., Wilson, M., & Ferreira, J. J. (2020). Collaborative intelligence: How human and artificial intelligence create value along the B2B sales funnel. Business Horizons, 63(3), 403–414. [Google Scholar] [CrossRef]
- Pereira, V., Hadjielias, E., Christofi, M., & Vrontis, D. (2023). A systematic literature review on the impact of artificial intelligence on workplace outcomes: A multiprocess perspective. Human Resource Management Review, 33(1), Article 100857. [Google Scholar] [CrossRef]
- Rahman, M. J., Liang, H., & Xue, Y. (2023). AI Aversion: A Task Dependent Multigroup Analysis. [Google Scholar]
- Rai, A. (2020). Explainable AI: from black box to glass box. Journal of the Academy of Marketing Science, 48(1), 137–141. [Google Scholar] [CrossRef]
- Rogers, E. M., Singhal, A., & Quinlan, M. M. (2014). Diffusion of innovations. In Taylor & Francis Group (pp. 432–448). [Google Scholar]
- Roldán, J. L., & Sánchez-Franco, M. J. (2012). Variance-Based Structural Equation Modelling: Guidelines for Using Partial Least Squares in Information Systems Research, 193–221. [Google Scholar] [CrossRef]
- Sarstedt, M., Ringle, C. M., & Hair, J. F. (2021). Partial least squares structural equation modelling. In Handbook of market research(pp. 587-632). Cham: Springer International Publishing. [Google Scholar] [CrossRef]
- Shaik, M. (2023). Impact of artificial intelligence on marketing. East Asian Journal of Multidisciplinary Research , 2(3), 993–1004. [Google Scholar] [CrossRef]
- Straub, D., Boudreau, M. C., & Gefen, D. (2004). Validation guidelines for IS positivist research. Communications of the Association for Information systems, 13(1), Article 24. [Google Scholar] [CrossRef]
- Susilo, W. H., Sujana, U., & Tidarianti, K. (2023). The Artificial Intelligence Improvement for the Private Retail Corporation Marketing, 3, 63–70. [Google Scholar]
- Sweeney, J. C., & Soutar, G. N. (2001). Consumer perceived value: The development of a multiple item scale. Journal of Retailing, 77(2), 203–220. [Google Scholar] [CrossRef]
- Trofymenko, M., Bulatova, O., Trofymenko, A., & Vyshniakov, O. (2023). Digital development and technological innovations: Inequality and asymmetry. Marketing i menedžment innovacij, 14(3), 215–229. [Google Scholar] [CrossRef]
- Upadhyay, N., Upadhyay, S., & Dwivedi, Y. K. (2022). Theorizing artificial intelligence acceptance and digital entrepreneurship model. International Journal of Entrepreneurial Behaviour and Research, 28(5), 1138–1166. [Google Scholar] [CrossRef]
- Venkatesh, V. (2022). Adoption and use of AI tools: a research agenda grounded in UTAUT. Annals of Operations Research, 308(1–2), 641–652. [Google Scholar] [CrossRef]
- Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 27(3), 425–478. [Google Scholar]
- Vlacic, B., Corbo, L., Costa e Silva, S., & Dabic, M. (2021). The evolving role of artificial intelligence in marketing: A review and research agenda. Journal of Business Research, 128, 187–203. [Google Scholar] [CrossRef]
- Williams, T. (2023). Some companies are already replacing workers with ChatGPT, despite warnings it shouldn’t be relied on for anything important. Fortune. [Google Scholar]
- Wu, C. W., & Monfort, A. (2023). Role of artificial intelligence in marketing strategies and performance. Psychology & Marketing, 40(3), 484–496. [Google Scholar] [CrossRef]
- Yang, X., Li, H., Ni, L., & Li, T. (2021). Application of artificial intelligence in precision marketing. Journal of Organizational and End User Computing (JOEUC), 33(4), 209–219. [Google Scholar] [CrossRef]
- Zahra, A. M., Dhewanto, W., & Utama, A. A. (2021). Boosting Emerging Technology Adoption in SMEs: A Case Study of the Fashion Industry. International Journal of Applied Business Research, 2021(2), 169–185. [Google Scholar] [CrossRef]
View articles in other formats
License
This work is licensed under a Creative Commons Attribution 4.0 International License
Coyright
Copyright (c) 2024 The Author(s).
Published by Sumy State University
Issue