Contents |
Authors:
Miguel Blanco Canto, University of Cadiz (Cadiz, Spain) Lydia Bares Lopez, University of Cadiz (Cadiz, Spain)
Pages: 34-47
Language: English
DOI: https://doi.org/10.21272/mmi.2018.3-03
Download: |
Views: |
Downloads: |
|
|
|
Abstract
In any economic organization, the existing relationship between its inputs and its outputs must be established in such a way that the management of its tangible and intangible human resources allows producing the maximum amount of useful products with the least amount of resources. In this article, we have analyzed this relation of efficiency applied to the university environment. In particular, the best universities in Europe have been studied. Previously, a rigorous study of the existing bibliography has been carried out. As a result, it has been seen that these studies include specific results analysis, without taking into account the three basic functions of 21st century universities, such as those related to improving the employability of their graduates, transmitting and expanding their scientific knowledge, and the modernization of the national economic system through the introduction of improvements in business activity. The methodology used in is data envelopment analysis (DEA). This model has allowed determining the relative position of each university in relation to the distance it maintains with respect to an ideal efficiency frontier. It also shows that aspects must be improved to be in a position of maximum efficiency. Four types of analysis have been applied. DEA 1 “Analysis of labor efficiency” in which the improvement of the degree of employability of university graduates has been analyzed, DEA 2 “Analysis of academic efficiency” that has allowed us to measure the efficiency in publications, the DEA 3 “Analysis of technological efficiency “that has allowed identifying the universities that are more efficient in terms of patents and finally DEA 4” Global efficiency analysis “that encompasses all the previous ones. Likewise, a correlation analysis was carried out among the results obtained. Among the main conclusions highlight how there is a high degree of correlation between the universities that achieve the best results in academic efficiency and technological efficiency. The comparisons in the level of global university efficiency made in this research work are the result of applying the DEA methodology on a production function that has been constructed using four variables inputs – undergraduate and graduate students and national and foreign teachers – and three output variables – levels of employment, publications and patents.
Keywords: ranking, university, employability, data envelopment analysis, patents, publications.
JEL Classification: O32.
Cite as: Canto, M. B., & Lopez, L. B. (2018). Ranking of global efficiency of the best universities in Europe. Marketing and Management of Innovations, 3, 34-47. https://doi.org/10.21272/mmi.2018.3-03
This work is licensed under a Creative Commons Attribution 4.0 International License
References
- Arcos, J. (1993). Evaluación de programas y políticas públicas. Metodología de evaluación. Avances en Contabilidad Analítica. Eficacia y Legalidad en la Gestión Pública, 113-158.
- Álvarez, R. (2001). Modelos con eficiencia técnica variante en el tiempo. La medición de la eficiencia y la productividad, Pirámide, Madrid.
- Farrell, M.J. (1957). The Measurement of Productive Efficiency. Journal of the Royal Statistical Society, 120, 253-290.
- Buchelli, G. A., & Marín, J. J. (2012). Estimación de la eficiencia del sectormetalmecánico en colombia: análisis de la frontera estocástica, Cuadernos de Economía, 31(58), 257-286.
- Chirinos, A., & Urdaneta, M. (2007). Medición de la eficiencia en el sector avícola mediante índices de Malmquist. Agroalimentaria, 12(25), 95-107.
- Camilli, G., Vargas, S., Ryan, S., & Barnett, W. S. (2010). Meta-analysis of the effects of early education interventions on cognitive and social development. Teachers College Record, 112(3), 579-620.
- Maza, F. J., Vergara, J. C., & Navarro, J. L. (2012). Eficiencia de la inversión en el régimen subsidiado en salud en Bolívar-Colombia, Investigacionesz Andina, 14, 386-400.
- Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429-444.
- Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078-1092.
- Bessent, A. M., & Bessent, E. W. (1980). Determining the comparative efficiency of schools through data envelopment analysis. Educational Administration Quarterly, 16(2), 57-75.
- Emrouznejad, A., & Yang, G. L. (2018). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Economic Planning Sciences, 61, 4-8.
- Worthington, A., & Dollery, B. E. (2000). Efficiency measurement in the local public sector: Econometric and mathematical programming frontier techniques. Queensland University of Technology, School of Economics and Finance.
- Zhonghua, C., & Ye, W. (2012). Research frontiers in public sector performance measurement. Physics Procedia, 25, 793-79.
- Abbott, M., & Doucouliagos, C. (2003). The efficiency of Australian universities: a data envelopment analysis. Economics of Education review, 22(1), 89-97.
- Avkiran, N. K. (2001). Investigating technical and scale efficiencies of Australian universities through data envelopment analysis. Socio-Economic Planning Sciences, 35(1), 57-80.
- Bessent, A. M., & Bessent, E. W. (1980). Determining the comparative efficiency of schools through data envelopment analysis. Educational Administration Quarterly, 16(2), 57-75.
- Chu Ng, Y., & Li, S. K. (2000). Measuring the research performance of Chinese higher education institutions: an application of data envelopment analysis. Education Economics, 8(2), 139-156.
- Correas, A. G., & Jorge, M. L. (2010). Análisis de diferentes medidas de la eficiencia investigadora y factores explicativos en las universidades públicas españolas. Investigaciones de Economía de la Educación, 5, 703-732.
- Johnes, J., & Li, Y. U. (2008). Measuring the research performance of Chinese higher education institutions using data envelopment analysis. China economic review, 19(4), 679-696.
- Johnes, J. (2006). Measuring teaching efficiency in higher education: An application of data envelopment analysis to economics graduates from UK Universities 1993. European Journal of Operational Research, 174(1), 443-456.
- Köksal, G., & Nalçaci, B. (2006). The relative efficiency of departments at a Turkish engineering college: A data envelopment analysis. Higher Education, 51(2), 173-189.
- Kuah, C. T., & Wong, K. Y. (2011). Efficiency assessment of universities through data envelopment analysis. Procedia Computer Science, 3, 499-506.
- Lee, B. L., & Worthington, A. C. (2016). A network DEA quantity and quality-orientated production model: An application to Australian university research services. Omega, 60, 26-33.
- Leitner, K. H., Prikoszovits, J., Schaffhauser-Linzatti, M., Stowasser, R., & Wagner, K. (2007). The impact of size and specialisation on universities’ department performance: A DEA analysis applied to Austrian universities. Higher Education, 53(4), 517-538.
- Marti, M. L., Puertas, R., & Calafat, C. (2014). Calidad y eficiencia de las Universidades Públicas Españolas. Revista de estudios regionales, 99, 135-154.
- Martín R. (2007). La eficiencia productiva en el ámbito universitario: aspectos claves para su evaluación. Estudios de Economía aplicada, 25(3), 791-811.
- Sagarra, M., Mar-Molinero, C., & Agasisti, T. (2017). Exploring the efficiency of Mexican universities: Integrating data envelopment analysis and multidimensional scaling. Omega, 67, 123-133.
- Taylor, B., & Harris, G. (2004). Relative efficiency among South African universities: A data envelopment analysis. Higher Education, 47(1), 73-89.
- Warning, S. (2004). Performance differences in German higher education: Empirical analysis of strategic groups. Review of Industrial Organization, 24(4), 393-408.
- Wolszczak-Derlacz, J. (2017). An evaluation and explanation of (in) efficiency in higher education institutions in Europe and the US with the application of two-stage semi-parametric DEA. Research Policy, 46(9), 1595-1605.
- Bourelos, E., Beyhan, B. and McKelvey, M. (2017). Is the prominent scientist the one who becomes an inventor? A matching of Swedish academic pairs in nanoscience to examine the effect of publishing on patenting. Research Evaluation, 26(2), 144-156.
- Grimm, H. M. and Jaenicke, J. (2015). Testing the causal relationship between academic patenting and scientific publishing in Germany: Crowding-out or reinforcement?. The Journal of Technology Transfer, 40(3), 512-535.
- Magerman, T., Van Looy, B. and Debackere, K. (2015). Does involvement in patenting jeopardize one’s academic footprint? An analysis of patent-paper pairs in biotechnology. Research Policy, 44(9), 1702-1713.
- Marco-Serrano, F., & Rausell-Köster, P. (2006). Productivity Analysis in the Spanish Cultural and Leisure Industry: A Regional Perspective/Análisis de la productividad en el sector de la cultura y el ocio español: una perspectiva regional. Estudios de Economía Aplicada, 24, 635-24á.
|