Штучний інтелект у маркетинговому менеджменті: перспективи для керівників компаній
- Університет Малаги, Іспанія
* Corresponding author
Pages: 42–55
Received: 31 July 2024
Revised: 20 December 2024
Accepted: 26 December 2024
Abstract
Keywords: штучний інтелект; маркетинг; бізнес-комунікації; впровадження ШІ; новітні технології.
How to Cite: Maldonado-Canca, L. A., Cabrera-Sánchez, J. P., Gonzalez-Robles, E. M. & Casado-Molina, A. M. (2024). AI in Marketing Management: Executive Perspectives from Companies. Marketing and Management of Innovations, 15(4), 42–55. https://doi.org/10.21272/mmi.2024.4-04
Abstract Views
PDF Downloads
This work is licensed under a Creative Commons Attribution 4.0 International License
References
- Agrawal, K. P. (2023). Towards adoption of generative AI in organizational settings. Journal of Computer Information Systems, 64(5), 636–651. [Google Scholar] [CrossRef]
- Ahmadi, H., Nilashi, M., Shahmoradi, L., & Ibrahim, O. (2017). Hospital Information System adoption: Expert perspectives on an adoption framework for Malaysian public hospitals. Computers in Human Behavior, 67, 161–189. [Google Scholar] [CrossRef]
- Akdim, K., & Casalo, L. V. (2023). Perceived value of AI-based recommendations service: the case of voice assistants. Service Business, 17(1), 81–112. [Google Scholar] [CrossRef]
- Al Hleewa, S. O., & Al Mubarak, M. (2023). Success Factors of Using Artificial Intelligence. In Technological Sustainability and Business Competitive Advantage(pp. 169-184). Cham: Springer International Publishing. [Google Scholar] [CrossRef]
- Alserr, N., & Salepçioglu, M. A. (2023). Success Factors Affecting the Adoption of Artificial Intelligence and the Impacts of on Organizational Excellence: A Case to be Studied in the MENA Region, and Turkey in Particular. Lecture Notes in Networks and Systems, 485, 3–16. [Google Scholar] [CrossRef]
- AlSheibani, S., Cheung, Y., & Messom, C. (2020). Rethinking the Competitive Landscape of Artificial Intelligence. Proceedings of the Annual Hawaii International Conference on System Sciences, 2020-January, 5861–5870. [Google Scholar] [CrossRef]
- Alt, R. (2020). Evolution and perspectives of electronic markets. Electronic Markets, 30(1), 1–13. [Google Scholar] [CrossRef]
- Andrews, J. E., Ward, H., & Yoon, J. W. (2021). UTAUT as a Model for Understanding Intention to Adopt AI and Related Technologies among Librarians. The Journal of Academic Librarianship, 47(6), 102437. [Google Scholar] [CrossRef]
- Ball, D., Coelho, P. S., & Vilares, M. J. (2006). Service personalization and loyalty. Journal of Services Marketing, 20(6), 391–403. [Google Scholar] [CrossRef]
- Banh, L., & Strobel, G. (2023). Generative artificial intelligence. Electronic Markets, 33(1), 1–17. [Google Scholar] [CrossRef]
- Brynjolfsson, E., & Mcafee, A. (2017). Artificial intelligence, for real. Harvard Business Review, 1, 1–31. [Google Scholar]
- Cabrera-Sánchez, J. P., Villarejo-Ramos, Á. F., Liébana-Cabanillas, F., & Shaikh, A. A. (2021). Identifying relevant segments of AI applications adopters – Expanding the UTAUT2’s variables. Telematics and Informatics, 58, Article 101529. [Google Scholar] [CrossRef]
- Cardon, P., Fleischmann, C., Aritz, J., Logemann, M., & Heidewald, J. (2023). The challenges and opportunities of AI-assisted writing: Developing AI literacy for the AI age. Business and Professional Communication Quarterly, 86(3), 257–295. [Google Scholar] [CrossRef]
- Castelo, N., Bos, M. W., & Lehmann, D. R. (2019). Task-dependent algorithm aversion. Journal of Marketing Research, 56(5), 809–825. [Google Scholar] [CrossRef]
- Chatterjee, S., Rana, N. P., Khorana, S., Mikalef, P., & Sharma, A. (2021). Assessing Organizational Users’ Intentions and Behavior to AI Integrated CRM Systems: a Meta-UTAUT Approach. Information Systems Frontiers, 25(4), 1299–1313. [Google Scholar] [[CrossRef]]
- Chow, C. S. K., Zhan, G., Wang, H., & He, M. (2023). Artificial intelligence (AI) adoption: An extended compensatory level of acceptance. Journal of Electronic Commerce Research, 24(1), 84–106. [Google Scholar]
- Davenport, T., & Harris, J. (2017). Competing on analytics: Updated, with a new introduction: The new science of winning. Harvard Business Press. [Google Scholar]
- Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003. [Google Scholar]
- Dhar, P. (2020). The carbon impact of artificial intelligence. Nature Machine Intelligence, 2(8), 423–425. [Google Scholar] [CrossRef]
- Dietvorst, B. J., Simmons, J. P., & Massey, C. (2015). Algorithm aversion: People erroneously avoid algorithms after seeing them err. Journal of Experimental Psychology: General, 144(1), 114–126. [Google Scholar] [CrossRef]
- Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., … Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agendas for research, practice and policy. International Journal of Information Management, 57, 101994. [Google Scholar] [CrossRef]
- Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2019). Re-examining the unified theory of acceptance and use of technology (UTAUT): Towards a revised theoretical model. Information Systems Frontiers, 21, 719–734. [Google Scholar] [CrossRef]
- Emon, M. M. H., Hassan, F., Nahid, M. H., & Rattanawiboonsom, V. (2023). Predicting Adoption Intention of Artificial Intelligence. AIUB Journal of Science and Engineering (AJSE), 22(2), 189–199. [Google Scholar] [CrossRef]
- Falk, R. F., & Miller, N. B. (1992). A primer for soft modelling. University of Akron Press. [Google Scholar]
- Fernández, D. A., & Rodríguez, M. B. (2022). Artificial intelligence: A reappraisal. Documentos de Trabajo de La Facultad de Ciencias Economicas y Empresariales, 1. [Google Scholar]
- Galaz, V., Centeno, M. A., Callahan, P. W., Causevic, A., Patterson, T., Brass, I., … & Levy, K. (2021). Artificial intelligence, systemic risks, and sustainability. Technology in Society, 67, Article [Google Scholar][CrossRef]
- Gansser, O. A., & Reich, C. S. (2021). A new acceptance model for artificial intelligence with extensions to UTAUT2: An empirical study in three segments of application. Technology in Society, 65, Article 101535. [Google Scholar] [CrossRef]
- Getchell, K. M., Carradini, S., Cardon, P. W., Fleischmann, C., Ma, H., Aritz, J., & Stapp, J. (2022). Artificial intelligence in business communication: The changing landscape of research and teaching. Business and Professional Communication Quarterly, 85(1), 7–33. [Google Scholar] [CrossRef]
- Güngör, H. (2020). Creating Value with Artificial Intelligence: A Multistakeholder Perspective. Journal of Creating Value, 6(1), 72–85. [Google Scholar] [CrossRef]
- Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). An introduction to structural equation modelling. Partial least squares structural equation modelling (PLS-SEM) using R: a workbook, 1–29. [Google Scholar]
- Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139-152. [Google Scholar]
- Haleem, A., Javaid, M., Asim Qadri, M., Pratap Singh, R., & Suman, R. (2022). Artificial intelligence (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks, 3, 119–132. [Google Scholar] [CrossRef]
- Hannig, U., & Seebacher, U. (2023). Marketing and Sales Automation: Basics, Implementation, and Applications. Springer Nature. [Google Scholar]
- Hasija, A., & Esper, T. L. (2022). In artificial intelligence (AI) we trust: A qualitative investigation of AI technology acceptance. Journal of Business Logistics, 43(3), 388–412. [Google Scholar] [CrossRef]
- Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modelling. Journal of the Academy of Marketing Science, 43(1), 115–135. [Google Scholar] [CrossRef]
- Hermann, E. (2022). Leveraging artificial intelligence in marketing for social good—An ethical perspective. Journal of Business Ethics, 179(1), 43–61. [Google Scholar] [CrossRef]
- Hopkins, E. (2022). Machine Learning Tools, Algorithms, and Techniques. Journal of Self-Governance and Management Economics, 10(1), 43–55. [Google Scholar]
- Huang, M. H., & Rust, R. T. (2018). Artificial Intelligence in Service. Journal of Service Research, 21(2), 155–172. [Google Scholar][CrossRef]
- Huang, M. H., & Rust, R. T. (2021). Engaged to a Robot? The Role of AI in Service. Journal of Service Research, 24(1), 30–41. [Google Scholar] [CrossRef]
- Huang, M. H., & Rust, R. T. (2022). A Framework for Collaborative Artificial Intelligence in Marketing. Journal of Retailing, 98(2), 209–223. [Google Scholar] [CrossRef]
- Iyer, P., & Bright, L. F. (2024). Navigating a paradigm shift: Technology and user acceptance of big data and artificial intelligence among advertising and marketing practitioners. Journal of Business Research, 180, Article 114699. [Google Scholar] [CrossRef]
- Jain, R., Garg, N., & Khera, S. N. (2022). Adoption of AI-enabled tools in social development organizations in India: An extension of UTAUT model. Frontiers in Psychology, 13, Article 893691. [Google Scholar] [CrossRef]
- Jameel, A. S., Harjan, S. A., & Ahmad, A. R. (2023). Behavioral intentions to use artificial intelligence among managers in small and medium enterprises. AIP Conference Proceedings, 2814(1), 020006. [Google Scholar] [CrossRef]
- Katebi, A., Homami, P., & Najmeddin, M. (2022). Acceptance model of precast concrete components in building construction based on Technology Acceptance Model (TAM) and Technology, Organization, and Environment (TOE) framework. Journal of Building Engineering, 45, Article 103518. [Google Scholar] [CrossRef]
- Kawaguchi, K. (2021). When will workers follow an algorithm? A field experiment with a retail business. Management Science, 67(3), 1670–1695. [Google Scholar] [CrossRef]
- Khan, M., Parvaiz, G. S., Bashir, N., Imtiaz, S., & Bae, J. (2022). Students’ key determinant structure towards educational technology acceptance at universities, during COVID 19 lockdown: Pakistani perspective. Cogent Education, 9(1), 19 [Google Scholar] [CrossRef]
- Kim, H.-J. (2023). A study on the intentions of ChatGPT users using the extended UTAUT model. Journal of Digital Contents Society, 24, 1465–1473. [Google Scholar] [CrossRef]
- Kleijnen, M., de Ruyter, K., & Wetzels, M. (2007). An assessment of value creation in mobile service delivery and the Kmecovamoderating role of time consciousness. Journal of Retailing, 83(1), 33–46. [Google Scholar] [CrossRef]
- Kmecova, I., & Juracka, D. (2023). Competences of managers and executives across economic sectors. Marketing i menedžment innovacij, 14(4), 128–139. [Google Scholar] [CrossRef]
- Komiak, S. Y. X., & Benbasat, I. (2006). The effects of personalization and familiarity on trust and adoption of recommendation agents. MIS Quarterly: Management Information Systems, 30(4), 941–960. [Google Scholar] [CrossRef]
- Kuberkar, S., & Kumar Singhal, T. (2020). Factors Influencing Adoption Intention of AI Powered Chatbot for Public Transport Services within a Smart City. International Journal on Emerging Technologies, 11(3), 948–958. [Google Scholar]
- Kurup, S., & Gupta, V. (2022). Factors Influencing the AI Adoption in Organizations. Metamorphosis, 21(2), 129–139. [Google Scholar][CrossRef]
- Lee, C. C., Lin, S. P., Yang, S. L., Tsou, M. Y., & Chang, K. Y. (2013). Evaluating the influence of perceived organizational learning capability on user acceptance of information technology among operating room nurse staff. Acta Anaesthesiologica Taiwanica, 51(1), 22–27. [Google Scholar] [CrossRef]
- Li, P. P., Bai, Y., & Xi, Y. (2012). The Contextual Antecedents of Organizational Trust: A Multidimensional Cross-level Analysis. Management and Organization Review, 8(2), 371–396. [Google Scholar] [CrossRef]
- Lin, H. C., Ho, C. F., & Yang, H. (2022). Understanding adoption of artificial intelligence-enabled language e-learning system: An empirical study of UTAUT model. International Journal of Mobile Learning and Organization, 16(1), 74–94. [Google Scholar] [CrossRef]
- Lin, K. Y., & Lu, H. P. (2015). Predicting mobile social network acceptance based on mobile value and social influence. Internet Research, 25(1), 107–130. [Google Scholar] [CrossRef]
- Lowrey, A. (2023). How ChatGPT will destabilize white-collar work. The Atlantic, 20. [Google Scholar]
- Mahmud, H., Islam, A. K. M. N., Ahmed, S. I., & Smolander, K. (2022). What influences algorithmic decision-making? A systematic literature review on algorithm aversion. Technological Forecasting and Social Change, 175, Article 121390. [Google Sholar] [CrossRef]
- Maldonado-Canca, L. A., Casado-Molina, A. M., Cabrera-Sánchez, J. P., & Bermúdez-González, G. (2024). Beyond the post: an SLR of enterprise artificial intelligence in social media. Social Network Analysis and Mining, 14(1), Article 219. [Google Scholar] [CrossRef]
- Mcafee, A., & Brynjolfsson, E. (2012). Big Data: The Management Revolution. [Google Scholar]
- Mogaji, E., Farquhar, J. D., van Esch, P., Durodié, C., & Perez-Vega, R. (2022). Guest editorial: Artificial intelligence in financial services marketing. International Journal of Bank Marketing, 40(6), 1097–1101. [Google Scholar] [CrossRef]
- Mogaji, E., Soetan, T. O., & Kieu, T. A. (2020). The implications of artificial intelligence on the digital marketing of financial services to vulnerable customers. Australasian Marketing Journal, 29(3), 235–242. [Google Scholar] [CrossRef]
- Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information systems research, 2(3), 192–222. [Google Scholar] [CrossRef]
- Nascimento, A. M., da Cunha, M. A. V. C., de Souza Meirelles, F., Scornavacca Jr, E., & De Melo, V. V. (2018). A Literature Analysis of Research on Artificial Intelligence in Management Information System (MIS). In AMCIS. [Google Scholar]
- Nazareno, L., & Schiff, D. S. (2021). The impact of automation and artificial intelligence on worker well-being. Technology in Society, 67, 101679. [Google Scholar] [CrossRef]
- Nazir, S., Khadim, S., Ali Asadullah, M., & Syed, N. (2023). Exploring the influence of artificial intelligence technology on consumer repurchase intention: The mediation and moderation approach. Technology in Society, 72, Article [Google Scholar] [CrossRef]
- Nesterenko, V., & Olefirenko, O. (2023). The impact of AI development on the development of marketing communications. Marketing i menedžment innovacij, 14(1), 169–181. [Google Scholar] [CrossRef]
- Nunnally, J. C. (1978). Psychometric Theory: 2d Ed. McGraw-Hill. [Google Scholar]
- Oliveira, T., Thomas, M., & Espadanal, M. (2014). Assessing the determinants of cloud computing adoption: An analysis of the manufacturing and services sectors. Information & Management, 51(5), 497–510. [Google Scholar] [CrossRef]
- Ontsi – Red.es. (2023, February). Uso de inteligencia artificial y big data en las empresas españolas. [Link]
- Owen Jr, D. M. (2015). Computer-Mediated Communication Acceptance as a Focus Group Methodology: Applicability of the UTAUT Framework to Executive Decision Makers. Wilmington University (Delaware) [Google Scholar]
- Pan, Y., Froese, F., Liu, N., Hu, Y., & Ye, M. (2022). The adoption of artificial intelligence in employee recruitment: The influence of contextual factors. The International Journal of Human Resource Management, 33(6), 1125–1147. [Google Scholar] [CrossRef]
- Paschen, J., Wilson, M., & Ferreira, J. J. (2020). Collaborative intelligence: How human and artificial intelligence create value along the B2B sales funnel. Business Horizons, 63(3), 403–414. [Google Scholar] [CrossRef]
- Pereira, V., Hadjielias, E., Christofi, M., & Vrontis, D. (2023). A systematic literature review on the impact of artificial intelligence on workplace outcomes: A multiprocess perspective. Human Resource Management Review, 33(1), Article 100857. [Google Scholar] [CrossRef]
- Rahman, M. J., Liang, H., & Xue, Y. (2023). AI Aversion: A Task Dependent Multigroup Analysis. [Google Scholar]
- Rai, A. (2020). Explainable AI: from black box to glass box. Journal of the Academy of Marketing Science, 48(1), 137–141. [Google Scholar] [CrossRef]
- Rogers, E. M., Singhal, A., & Quinlan, M. M. (2014). Diffusion of innovations. In Taylor & Francis Group (pp. 432–448). [Google Scholar]
- Roldán, J. L., & Sánchez-Franco, M. J. (2012). Variance-Based Structural Equation Modelling: Guidelines for Using Partial Least Squares in Information Systems Research, 193–221. [Google Scholar] [CrossRef]
- Sarstedt, M., Ringle, C. M., & Hair, J. F. (2021). Partial least squares structural equation modelling. In Handbook of market research(pp. 587-632). Cham: Springer International Publishing. [Google Scholar] [CrossRef]
- Shaik, M. (2023). Impact of artificial intelligence on marketing. East Asian Journal of Multidisciplinary Research , 2(3), 993–1004. [Google Scholar] [CrossRef]
- Straub, D., Boudreau, M. C., & Gefen, D. (2004). Validation guidelines for IS positivist research. Communications of the Association for Information systems, 13(1), Article 24. [Google Scholar] [CrossRef]
- Susilo, W. H., Sujana, U., & Tidarianti, K. (2023). The Artificial Intelligence Improvement for the Private Retail Corporation Marketing, 3, 63–70. [Google Scholar]
- Sweeney, J. C., & Soutar, G. N. (2001). Consumer perceived value: The development of a multiple item scale. Journal of Retailing, 77(2), 203–220. [Google Scholar] [CrossRef]
- Trofymenko, M., Bulatova, O., Trofymenko, A., & Vyshniakov, O. (2023). Digital development and technological innovations: Inequality and asymmetry. Marketing i menedžment innovacij, 14(3), 215–229. [Google Scholar] [CrossRef]
- Upadhyay, N., Upadhyay, S., & Dwivedi, Y. K. (2022). Theorizing artificial intelligence acceptance and digital entrepreneurship model. International Journal of Entrepreneurial Behaviour and Research, 28(5), 1138–1166. [Google Scholar] [CrossRef]
- Venkatesh, V. (2022). Adoption and use of AI tools: a research agenda grounded in UTAUT. Annals of Operations Research, 308(1–2), 641–652. [Google Scholar] [CrossRef]
- Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 27(3), 425–478. [Google Scholar]
- Vlacic, B., Corbo, L., Costa e Silva, S., & Dabic, M. (2021). The evolving role of artificial intelligence in marketing: A review and research agenda. Journal of Business Research, 128, 187–203. [Google Scholar] [CrossRef]
- Williams, T. (2023). Some companies are already replacing workers with ChatGPT, despite warnings it shouldn’t be relied on for anything important. Fortune. [Google Scholar]
- Wu, C. W., & Monfort, A. (2023). Role of artificial intelligence in marketing strategies and performance. Psychology & Marketing, 40(3), 484–496. [Google Scholar] [CrossRef]
- Yang, X., Li, H., Ni, L., & Li, T. (2021). Application of artificial intelligence in precision marketing. Journal of Organizational and End User Computing (JOEUC), 33(4), 209–219. [Google Scholar] [CrossRef]
- Zahra, A. M., Dhewanto, W., & Utama, A. A. (2021). Boosting Emerging Technology Adoption in SMEs: A Case Study of the Fashion Industry. International Journal of Applied Business Research, 2021(2), 169–185. [Google Scholar] [CrossRef]
View articles in other formats
License
This work is licensed under a Creative Commons Attribution 4.0 International License
Coyright
Copyright (c) 2024 The Author(s).
Published by Sumy State University
Issue