Marketing and Management of Innovations

ISSN (print) – 2218-4511 

ISSN (online) – 2227-6718

Реєстр суб’єктів у сфері медіа, Ідентифікатор у реєстрі:

R30-01179, Рішення від 31 серпня 2023 року, № 759

Мова видання: англійська 

Журнал виходить щоквартально (березень, червень, вересень і грудень) 

Бізнес-модель: Golden Open Access | APC Policy

Головний редактор            Редколегія

Олексій Люльов

Сумський державний університет | Україна

Сентимент-аналіз як інноваційний інструмент прогнозування інфляції в Румунії

Міхаела Сіміонеску 1,2,3,*,  , Александру-Сабін Нікула
 2,4,  
  1. Факультет бізнесу та адміністрації, Бухарестський університет, Бухарест, Румунія
  2. Академія румунських учених, Бухарест, Румунія
  3. Інститут економічного прогнозування, Румунська академія, Бухарест, Румунія
  4. Національний інститут економічних досліджень імені Костіна К. Киріцеску, Румунська академія, Бухарест, Румунія

     * Corresponding author

Received: 10 January 2024

Revised: 13 May 2024

Accepted: 14 June 2024

Abstract

На початку 2024 року Румунія зіткнулася з найвищим рівнем інфляції в Європейському Союзі. Проте порівняно з 2023 роком було досягнуто певного прогресу завдяки підвищенню відсоткової ставки. Інфляція виникла через дію як глобальних, так і внутрішніх факторів: глобальні фактори включають війну Росії проти України, збої в ланцюгах постачання, спричинені пандемією COVID-19, а також зростання цін на сировину; внутрішні фактори включають підвищення заробітних плат і пенсій, підвищення податків і зборів та стратегію поступового підвищення ставки грошово-кредитної політики. Національний банк Румунії (НБР) використовує інструменти грошово-кредитної політики для таргетування інфляції та надає щоквартальні прогнози. Однак за умов невизначеності числові прогнози менш надійні. Використання сентимент-аналізу як інноваційного інструменту при прогнозуванні дозволяє підвищити рівень точності прогнозів. Авторами наголошено, що сентимент-аналіз стає все більш важливим у галузі економіки, пропонуючи цінні інсайти та потенційно покращуючи економічне прогнозування і прийняття рішень завдяки швидкому технологічному прогресу. Сентимент-аналіз дозволяє виявити потенційні зміни в поведінці споживачів і бізнес-рішеннях до того, як вони будуть відображені в реальних економічних даних, забезпечуючи систему раннього попередження про економічні тенденції та потенційні кризи. Методологічна основа дослідження заснована на обробці природної мови для витягування індексів сентименту з великих обсягів текстів в Інфляційних звітах, наданих НБР. Крім того, індекси сентименту, розраховані за допомогою IntelliDocker, включені в авторегресійні моделі з розподіленим лагом (ARDL) для надання щоквартальних прогнозів інфляції. Цей тип економетричної моделі має перевагу у вирішенні проблеми ендогенності. Крім того, рівень безробіття розглядається як предиктор інфляції, оскільки напруженість на ринку праці може впливати на інфляцію. Ця стаття робить внесок у емпіричне прогнозування, пропонуючи прогнози сентименту, які є більш точними, ніж числові прогнози НБР за період з першого кварталу 2006 року до четвертого кварталу 2023 року. Новий метод може використовуватися для прогнозування інфляції на наступні квартали. Точніші прогнози будуть цінними для бізнесу, центрального банку, політиків та широкої громадськості. Однак, хоча сентимент-аналіз надає цінні інсайти, важливо пам’ятати, що людське судження та експертиза залишаються важливими для інтерпретації даних та прийняття обґрунтованих економічних рішень

Keywords: інфляція; прогноз; індекс сентименту; обробка природної мови.

How to Cite: Simionescu, M., & Nicula, A. S. (2024). Sentiment Analysis as Innovation in the Inflation Forecasting in Romania. Marketing and Management of Innovations, 15(2), 13–25. https://doi.org/10.21272/mmi.2024.2-02

Abstract Views

PDF Downloads

References

  1. Angeletos, G. M., Collard, F., & Dellas, H. (2018). Quantifying confidence. Econometrica86(5), 1689–1726. [Google Scholar] [CrossRef]
  2. Angeletos, G. M., & La’o, J. (2013). Sentiments. Econometrica81(2), 739-779. [Google Scholar] [CrossRef]
  3. Ardia, D., Bluteau, K., Borms, S., & Boudt, K. (2020). Econometrics meets sentiment: an overview of methodology and applications. Journal of Economic Survey, 34(3), 512–547. [Google Scholar] [CrossRef]
  4. Ardia, D., Bluteau, K., Borms, S., & Boudt, K. (2021). The R package sentometrics to compute, aggregate and predict with textual sentiment. Journal of Statistical Software, 99(2), 1–40. [Google Scholar] [CrossRef]
  5. Ardia, D., Bluteau, K., & Boudt, K. (2019). Questioning the news about economic growth: Sparse forecasting using thousands of news-based sentiment values. International Journal of Forecasting35(4), 1370–1386. [Google Scholar] [CrossRef]
  6. Baciu, I. C. (2015). Stochastic models for forecasting inflation rate. Empirical evidence from Romania. Procedia Economics and Finance20, 44-52. [Google Scholar] [CrossRef]
  7. Bajo, E., & Raimondo, C. (2017). Media sentiment and IPO underpricing. Journal of Corporate Finance46, 139–153. [Google Scholar][CrossRef]
  8. Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring economic policy uncertainty. The quarterly journal of economics131(4), 1593–1636. [Google Scholar] [CrossRef]
  9. Bortoli, C., Combes, S., & Renault, T. (2018). Nowcasting GDP growth by reading newspapers. Economie et Statistique505(1), 17–33. [Google Scholar]
  10. Cambria, E., Das, D., Bandyopadhyay, S., & Feraco, A. (2017). Affective computing and sentiment analysis. A practical guide to sentiment analysis, 1–10. [Google Scholar] [CrossRef]
  11. Casey, G. P., & Owen, A. L. (2013). Good news, bad news, and consumer confidence. Social Science Quarterly94(1), 292–315. [Google Scholar] [CrossRef]
  12. Castle, J. L., Hendry, D. F., & Martinez, A. B. (2017). Evaluating forecasts, narratives and policy using a test of invariance. Econometrics5(3), Article 39. [Google Scholar] [CrossRef]
  13. Clements, M. P., & Reade, J. J. (2020). Forecasting and forecast narratives: The Bank of England inflation reports. International Journal of Forecasting36(4), 1488–1500. [Google Scholar] [CrossRef]
  14. Di Fatta, G., Reade, J. J., Jaworska, S., & Nanda, A. (2015). Big social data and political sentiment: the tweet stream during the UK general election 2015 campaign. In 2015 IEEE international conference on smart city/socialcom/sustaincom (smartcity)(pp. 293-298). IEEE. [Google Scholar] [CrossRef]
  15. Ericsson, N. R. (2016). Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis. International Journal of Forecasting32(2), 571–583. [Google Scholar] [CrossRef]
  16. Eugster, P., & Uhl, M. W. (2024). Forecasting inflation using sentiment. Economics Letters, Article 111575. [Google Scholar] [CrossRef]
  17. Eurostat (2024). Annual inflation down to 2.8% in the euro area. [Link]
  18. Evans, J. A., & Aceves, P. (2016). Machine translation: Mining text for social theory. Annual review of sociology42, 21–50. [Google Scholar][CrossRef]
  19. Feldman, R., Govindaraj, S., Livnat, J., & Segal, B. (2010). Management’s tone change, post earnings announcement drift and accruals. Review of Accounting Studies15, 915–953. [Google Scholar] [CrossRef]
  20. Folgieri, R., Baldigara, T., & Mamula, M. (2018). Sentiment analysis and artificial neural networks-based econometric models for tourism demand forecasting. In Tourism & Hospitality Industry: Conference Proceedings(pp. 88-97). Tourism and Hospitality Industry. [Google Scholar]
  21. Fraiberger, S. P. (2016). News sentiment and cross-country fluctuations. Proceedings of the First Workshop on NLP and Computational Social Science, 125–131. [Google Scholar] [CrossRef]
  22. Garcia, D. (2013). Sentiment during recessions. The journal of finance68(3), 1267–1300. [Google Scholar] [CrossRef]
  23. Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political analysis21(3), 267–297. [Google Scholar] [CrossRef]
  24. Hansen, S., & McMahon, M. (2016). Shocking language: Understanding the macroeconomic effects of central bank communication. Journal of International Economics99, 114–133. [Google Scholar] [CrossRef]
  25. Henry, E. (2008). Are investors influenced by how earnings press releases are written?. The Journal of Business Communication (1973)45(4), 363–407. [Google Scholar] [CrossRef]
  26. Hussein, D. M. E. D. M. (2018). A survey on sentiment analysis challenges. Journal of King Saud University-Engineering Sciences30(4), 330–338. [Google Scholar] [CrossRef]
  27. Jegadeesh, N., & Wu, D. (2013). Word power: A new approach for content analysis. Journal of financial economics110(3), 712–729. [Google Scholar] [CrossRef]
  28. Jones, J. T., Sinclair, T. M., & Stekler, H. O. (2020). A textual analysis of Bank of England growth forecasts. International Journal of Forecasting36(4), 1478–1487. [Google Scholar] [CrossRef]
  29. Kearney, C., & Liu, S. (2014). Textual sentiment in finance: A survey of methods and models. International Review of Financial Analysis33, 171–185. [Google Scholar] [CrossRef]
  30. Kräussl, R., & Mirgorodskaya, E. (2017). Media, sentiment and market performance in the long run. The European Journal of Finance23(11), 1059–1082. [Google Scholar] [CrossRef]
  31. Liang, B., Su, H., Gui, L., Cambria, E., & Xu, R. (2022). Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks. Knowledge-Based Systems235, Article 107643. [Google Scholar] [CrossRef]
  32. Ludvigson, S. C. (2004). Consumer confidence and consumer spending. Journal of Economic perspectives18(2), 29–50. [Google Scholar][CrossRef]
  33. Lukauskas, M., Pilinkienė, V., Bruneckienė, J., Stundžienė, A., Grybauskas, A., & Ruzgas, T. (2022). Economic activity forecasting based on the sentiment analysis of news. Mathematics10(19), 3461. [Google Scholar] [CrossRef]
  34. Munezero, M., Montero, C. S., Sutinen, E., & Pajunen, J. (2014). Are they different? Affect, feeling, emotion, sentiment, and opinion detection in text. IEEE transactions on affective computing5(2), 101–111. [Google Scholar] [CrossRef]
  35. NBR- National Bank of Romania (2024). Inflation Reports. [Link]
  36. Nyman, R., Kapadia, S., & Tuckett, D. (2021). News and narratives in financial systems: exploiting big data for systemic risk assessment. Journal of Economic Dynamics and Control127, Article 104119. [Google Scholar] [CrossRef]
  37. Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Taieb, S. B., … & Ziel, F. (2022). Forecasting: theory and practice. International Journal of Forecasting38(3), 705–871. [Google Scholar] [CrossRef]
  38. Romer, C. D., & Romer, D. H. (2008). The FOMC versus the staff: where can monetary policymakers add value?. American Economic Review98(2), 230–235. [Google Scholar] [CrossRef]
  39. Shapiro, A. H., Sudhof, M., & Wilson, D. J. (2022). Measuring news sentiment. Journal of econometrics228(2), 221–243. [Google Scholar][CrossRef]
  40. Sharpe, S. A., Sinha, N. R., & Hollrah, C. A. (2023). The power of narrative sentiment in economic forecasts. International Journal of Forecasting39(3), 1097–1121. [Google Scholar] [CrossRef]
  41. Simionescu, M. (2020). Bayesian combined forecasts and Monte Carlo simulations to improve inflation rate predictions in Romania. Research Papers in Economics and Finance4(1), 7–20. [Google Scholar]
  42. Simionescu, M. (2022). Econometrics of sentiments-sentometrics and machine learning: the improvement of inflation predictions in Romania using sentiment analysis. Technological Forecasting and Social Change182, Article 121867. [Google Scholar] [CrossRef]
  43. Stekler, H., & Symington, H. (2016). Evaluating qualitative forecasts: The FOMC minutes, 2006–2010. International Journal of Forecasting32(2), 559–570. [Google Scholar] [CrossRef]
  44. Susskind, Z., Arden, B., John, L. K., Stockton, P., & John, E. B. (2021). Neuro-symbolic ai: An emerging class of ai workloads and their characterization. arXiv preprint arXiv:2109.06133. [Google Scholar] [CrossRef]
  45. Taboada, M. (2016). Sentiment analysis: An overview from linguistics. Annual Review of Linguistics2, 325–347. [Google Scholar][CrossRef]
  46. Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in the stock market. The Journal of finance62(3), 1139–1168. [Google Scholar] [CrossRef]
  47. Thorsrud, L. A. (2020). Words are the new numbers: A newsy coincident index of the business cycle. Journal of Business & Economic Statistics38(2), 393–409. [Google Scholar] [CrossRef]
  48. Van de Kauter, M., Desmet, B., & Hoste, V. (2015). The good, the bad and the implicit: a comprehensive approach to annotating explicit and implicit sentiment. Language resources and evaluation49, 685–720. [Google Scholar] [CrossRef]
  49. Wang, W., Guo, L., & Wu, Y. J. (2022a). The merits of a sentiment analysis of antecedent comments for the prediction of online fundraising outcomes. Technological Forecasting and Social Change174, Article 121070. [Google Scholar] [CrossRef]
  50. Wang, Y., Song, W., Tao, W., Liotta, A., Yang, D., Li, X., … & Zhang, W. (2022b). A systematic review on affective computing: Emotion models, databases, and recent advances. Information Fusion83, 19–52. [Google Scholar] [CrossRef]
  51. Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery8(4), Article e1253. [Google Scholar] [CrossRef]

View articles in other formats

License

Coyright

Copyright (c) 2024 The Author(s).

Published by Sumy State University

Issue