Зміст |
Автори:
Марія Олеарова, ORCID: https://orcid.org/0000-0001-9086-7975 Ph.D., Пряшівський університет, Словаччина Радован Бачик, ORCID: https://orcid.org/0000-0002-5780-3838 Ph.D., Пряшівський університет, Словаччина Беата Гавурова, ORCID: https://orcid.org/0000-0002-0606-879X Технічний університет у Кошицях, Словаччина Мартін Рігельський, ORCID: https://orcid.org/0000-0003-1427-4689 Ph.D., Пряшівський університет, Словаччина
Сторінки: 99-110
Мова: Англійська
DOI: https://doi.org/10.21272/mmi.2023.1-09
Отримано: 21.05.2022
Прийнято: 01.03.2023
Опубліковано: 31.03.2023
Завантажити: |
Перегляди: |
Завантаження: |
|
|
|
Розширена анотація українською мовою
Ця стаття узагальнює аргументи та контраргументи в межах наукової дискусії з питання впливу цифрових технологій на життя населення. Систематизація літературних джерел та підходів до розв’язання наукової проблеми засвідчила, що сучасні технології можуть мати як позитивний, так і негативний вплив на якість життя людей. З огляду на універсальну природу мобільних телефонів, необмежені можливості використання та їх широкий функціонал можуть впливати на ефективний розподіл часу людей. Метою даної статті є оцінка зв’язку між використанням мобільних пристроїв та використанням часу людей на прикладі країн Організації економічного співробітництва та розвитку. У ході емпіричного аналізу було використано 3 індикатори використання мобільних телефонів та 12 показників використання часу. Отримані результати дослідження підтвердили гіпотезу, щодо незначного впливу частоти використання мобільних телефонів на зміни в структурі витрат часу людей. Однак, дана гіпотеза не була підтверджена у моделях для вибірки з жінок. За результатами дослідження встановлено найбільш помітні різниці між неоплачуваним та оплачуваним часом протягом дня. Результати дослідження мають практичне значення та можуть бути корисними в різних галузях, включаючи бізнес, управління, політику та сталий розвиток. У бізнесі вони можуть допомогти у розумінні факторів-впливу на продуктивність працівників та шляхи покращення ефективності робочих процесів. Наголошено, що управлінські рішення, пов’язані з оптимізацією робочого процесу, можуть бути прийняті на підставі отриманих даних про витрачений час. У політиці отримані висновки можуть бути використані для розробки більш ефективних рішень у сфері регулювання ринку праці та підтримки розвитку ІКТ-сектору. З огляду на важливість сталого розвитку, результати дослідження можуть бути використані для оцінки ступеня відповідності соціально-економічного розвитку до вимог сталого розвитку. Подальші дослідження сприятимуть розширенню наявних знань про вплив технологій на повсякденне життя та розвиток суспільства.
Ключові слова: IKT-технології, мобільний широкосмуговий зв’язок, країни ОЕСР, сталість, витрати часу.
Класифікація JEL: M10, M20, M30.
Цитувати як: Olearova, M., Bacik, R., Gavurova, B., & Rigelsky, M (2023). Identifying the Relationship Between the Use of Mobile Technologies and Time: A Study Based on a Sample of OECD Member Countries Marketing and Management of Innovations, 1, 99-110. https://doi.org/10.21272/mmi.2023.1-09
Ця стаття публікуються за ліцензією Creative Commons Attribution International License
Список використаних джерел
- Adam, B. (1995). Timewatch: The Social Analysis of Time. Cambridge: Polity Press. [Google Scholar]
- Andone, I., Blaszkiewicz, K., Eibes, M., Trendafilov, B., Montag, C., & Markowetz, A. (2016). How Age and Gender Affect Smartphone Usage. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing Adjunct (pp. 9-12). Universität Ulm. [Google Scholar] [CrossRef]
- Anshari, M., Alas, Y., Hardaker, G., Jaidin, J. H., Smith, M., & Ahad, A. D. (2016). Smartphone habit and behavior in Brunei: Personalization, gender, and generation gap. Computers in human behavior, 64, 719-727. [Google Scholar] [CrossRef]
- Bacik, R., Fedorko, R., Nastisin, L., & Gavurova, B. (2018). Factors of communication mix on social media and their role in forming customer experience and brand image. Management & Marketing. Challenges for the Knowledge Society, 13(3), 1108-1118. [Google Scholar] [CrossRef]
- Bae, S.M. (2017). The relationship between the type of smartphone use and smartphone dependence of Korean adolescents: National survey study. Children and Youth Services Review, 81, 207–211. [Google Scholar] [CrossRef]
- Bianchi, A., & Phillips, J. G. (2005). Psychological predictors of problem mobile phone use. Cyberpsychology and Behavior, 8(1), 39-51. [Google Scholar] [CrossRef]
- Boumosleh, J., & Jaalouk, D. (2017). Depression, anxiety, and smartphone addiction in university students-A cross sectional study. PLoS ONE, 12(8). [Google Scholar] [CrossRef]
- Castells, M. (2010). The Information Age: Economy, Society and Culture. Volume I: The Rise of the Network Society. 2-nd edition. [Google Scholar]
- Chen, B., Liu, F., Ding, S., Ying, X., Wang, L., & Wen, Y. (2017). Gender differences in factors associated with smartphone addiction: a cross-sectional study among medical college students. BMC psychiatry, 17(1), 1-9. [Google Scholar] [CrossRef]
- Choudhary, P., & Velaga, N. R. (2019). Effects of phone use on driving performance: A comparative analysis of young and professional drivers. Safety science, 111, 179-187. [Google Scholar] [CrossRef]
- Cisco (2020). Cisco Annual Internet Report (2018–2023) White Paper. Retrieved from [Link]
- Demirci, K., Akgönül, M., & Akpinar, A. (2015). Relationship of smartphone use severity with sleep quality, depression, and anxiety in university students. Journal of behavioral addictions, 4(2), 85-92. [Google Scholar] [CrossRef]
- Deng, T., Kanthawala, S., Meng, J., Peng, W., Kononova, A., Hao, Q., … & David, P. (2019). Measuring smartphone usage and task switching with log tracking and self-reports. Mobile Media & Communication, 7(1), 3-23. [Google Scholar] [CrossRef]
- Derks, D., & Bakker, A. B. (2014). Smartphone use, work–home interference, and burnout: A diary study on the role of recovery. Applied Psychology, 63(3), 411-440. [Google Scholar] [CrossRef]
- Derks, D., & Bakker, A. B. (2014). Smartphone use, work–home interference, and burnout: A diary study on the role of recovery. Applied Psychology, 63(3), 411-440. [Google Scholar] [CrossRef]
- Donker, T., Petrie, K., Proudfoot, J., Clarke, J., Birch, M. R., & Christensen, H. (2013). Smartphones for smarter delivery of mental health programs: a systematic review. Journal of medical Internet research, 15(11), e247. [Google Scholar] [CrossRef]
- Ehrlen, V. (2021). Tracking oneself for others: Communal and self-motivational value of sharing exercise data online. Leisure Studies, 40(4), 545-560. [Google Scholar] [CrossRef]
- Eriksson, N., Rosenbröijer, C. J., & Fagerstrøm, A. (2018). Smartphones as decision support in retail stores–The role of product category and gender. Procedia Computer Science, 138, 508-515. [Google Scholar] [CrossRef]
- Farman, J. (2020). Mobile interface theory: Embodied space and locative media. Routledge. [Google Scholar]
- Floros, C., Cai, W., McKenna, B., & Ajeeb, D. (2021). Imagine being off-the-grid: Millennials’ perceptions of digital-free travel. Journal of Sustainable Tourism, 29(5), 751-766. [Google Scholar] [CrossRef]
- Furst, R. T., Evans, D. N., & Roderick, N. M. (2018). Frequency of college student smartphone use: impact on classroom homework assignments. Journal of Technology in Behavioral Science, 3, 49-57. [Google Scholar] [CrossRef]
- Goggin, G. (2011). Ubiquitous apps: Politics of openness in global mobile cultures. Digital creativity, 22(3), 148-159. [Google Scholar] [CrossRef]
- Hahn, K. H., & Kim, J. (2013). Salient antecedents of mobile shopping intentions: Media dependency, fashion/brand interest and peer influence. Journal of Global Fashion Marketing, 4(4), 225-246. [Google Scholar] [CrossRef]
- Han, J. S., & Patterson, I. (2007). An analysis of the influence that leisure experiences have on a person’s mood state, health and wellbeing. Annals of Leisure Research, 10(3-4), 328-351. [Google Scholar] [CrossRef]
- Hassan, R. (2009). Empires of Speed: Time and the Acceleration of Politics and Society. Leiden: Brill Academic Publishers. [Google Scholar]
- Haug, S., Castro, R. P., Kwon, M., Filler, A., Kowatsch, T., & Schaub, M. P. (2015). Smartphone use and smartphone addiction among young people in Switzerland. Journal of behavioral addictions, 4(4), 299-307. [Google Scholar] [CrossRef]
- Herrschel, T., & Dierwechter, Y. (2018). Smart transitions in city regionalism: territory, politics and the quest for competitiveness and sustainability. Routledge. [Google Scholar]
- Ho, R. C., Zhang, M. W., Tsang, T. Y., Toh, A. H., Pan, F., Lu, Y., … & Mak, K. K. (2014). The association between internet addiction and psychiatric co-morbidity: a meta-analysis. BMC psychiatry, 14(1), 1-10. [Google Scholar] [CrossRef]
- Hong, F. Y., Chiu, S. I., & Huang, D. H. (2012). A model of the relationship between psychological characteristics, mobile phone addiction and use of mobile phones by Taiwanese university female students. Computers in human behavior, 28(6), 2152-2159. [Google Scholar] [CrossRef]
- Irimiás, A., Csordás, T., Kiss, K., & Michalkó, G. (2021). Aggregated roles of smartphones in young adults’ leisure and well-being: a diary study. Sustainability, 13(8), 4133. [Google Scholar] [CrossRef]
- Jeong, S. H., Kim, H., Yum, J. Y., & Hwang, Y. (2016). What type of content are smartphone users addicted to?: SNS vs. games. Computers in human behavior, 54, 10-17. [Google Scholar] [CrossRef]
- Klimova, B., & Valis, M. (2018). Smartphone applications can serve as effective cognitive training tools in healthy aging. Frontiers in aging neuroscience, 9, 436. [Google Scholar] [CrossRef]
- Klopfer, E., & Squire, K. (2008). Environmental Detectives—the development of an augmented reality platform for environmental simulations. Educational technology research and development, 56, 203-228. [Google Scholar] [CrossRef]
- Kossek, E. E., & Lautsch, B. A. (2012). Work–family boundary management styles in organizations: A cross-level model. Organizational Psychology Review, 2(2), 152-171. [Google Scholar] [CrossRef]
- Krithika, M., & Vasantha, S. (2013). The mobile phone usage among teens and young adults impact of invading technology. International Journal of Innovative Research in Science, Engineering and Technology, 2(12), 7259-7265. [Google Scholar]
- Kumar, J. D., & Arulchelvan, S. (2018). The attitude towards smartphones and its influence on process, social and compulsive usage. Athens Journal of Mass Media and Communications, 4(4), 301-318. [Google Scholar] [CrossRef]
- Kuss, D. J., & Griffiths, M. D. (2017). Social networking sites and addiction: Ten lessons learned. International journal of environmental research and public health, 14(3), 311. [Google Scholar] [CrossRef]
- Kuss, D. J. (2013). Internet gaming addiction: current perspectives. Psychology research and behavior management, 125-137. [Google Scholar]
- Kuss, D.J., Griffiths, M.D. & Binder, J.F. (2013a). Internet addiction in students: prevalence and risk factors. Computers in Human Behavior, 29(3), 959–966. [Google Scholar] [CrossRef]
- Kuss, D.J., van Rooij, A., Shorter, G.W., Griffiths, M.D. & van de Mheen, D. (2013b). Internet addiction in adolescents: prevalence and risk factors. Computers in Human Behavior, 29(5), 1987–1996. [Google Scholar] [CrossRef]
- Kwon, M., Kim, D.J., Cho, H., & Yang, S. (2013). The smartphone addiction scale: Development and validation of a short version for adolescents. PLoS One, 8(12), e83558. [Google Scholar] [CrossRef]
- Lanaj, K., Johnson, R.E. & Barnes, C.M. (2014). Beginning the workday yet already depleted? Consequences of late-night smartphone use and sleep. Organizational Behavior and Human Decision Processes, 124(1), 11–23. [Google Scholar] [CrossRef]
- Lee, E.J. & Kim, H.S. (2018). Gender Differences in Smartphone Addiction Behaviors Associated With Parent–Child Bonding, Parent–Child Communication, and Parental Mediation Among Korean Elementary School Students. Journal of Addictions Nursing, 29(4), 244. [Google Scholar] [CrossRef]
- Lee, U., Lee, J., Ko, M., Lee, C., Kim, Y., Yang, S. & Song, J. (2014). Hooked on smartphones: an exploratory study on smartphone overuse among college students. Proceedings 32nd Annual ACM Conference on Human Factors in Computing Systems. Canada: Toronto. Pp. 2327-2336.[Google Scholar]
- Li, L. & Lin, T.T.C. (2017). Examining how dependence on smartphones at work relates to Chinese employees’ workplace social capital, job performance, and smartphone addiction. Information Development, 34 (5), 489-503. [Google Scholar] [CrossRef]
- Liebherrad, M., Schubertb, P., Antonsad, S., Montagc, C. & Brandad, M. (2020). Smartphones and attention, curse or blessing? – A review on the effects of smartphone usage on attention, inhibition, and working memory. Computers in Human Behavior Reports, 1, 100005. [Google Scholar] [CrossRef]
- Lin, Y.H., Lin, Y.C., Lee, Y.H., Lin, P.H.., Lin, S.H., Chang, L.R. & Kuo, T.B.J. (2015). Time distortion associated with smartphone addiction: identifying smartphone addiction via a mobile application (App). Journal of Psychiatric Research, 65,139-145. [Google Scholar] [CrossRef]
- Lopez-Fernandez, O., et al., 2017. Use and misuse of mobile technologies in young adulthood: a European cross-cultural empirical study. Journal of Behavioral Addictions, 6(2), 168–177. [Google Scholar] [CrossRef]
- Martínez-Sánchez, I., Goig-Martínez, R.M., Álvarez-Rodríguez, J. & Fernández-Cruz, M. (2020). Factors Contributing to Mobile Phone Dependence Amongst Young People—Educational Implications. Sustainability, 12(6), 2554. [Google Scholar] [CrossRef]
- McDaniel, B.T. & Coyne, S.M. (2016). Technoference”: The interference of technology in couple relationships and implications for women’s personal and relational well-being. Psychology of Popular Media, 5(1), 85–98. [Google Scholar] [CrossRef]
- Michelson, W. (2005). Time use: Expanding the explanatory power of the social sci-ences. London: Paradigm.
- Montag, C., Błaszkiewicz, K., Lachmann, B., Sariyska, R., Andone, I., Trendafilov, B. & Markowetz, A., (2015b). Recorded behavior as a valuable resource for diagnostics inmobile phone addiction: Evidence from Psychoinformatics. Behavioral Sciences, 5(4), 434–442. [Google Scholar] [CrossRef]
- Morahan-Martin, J. (2004). Women and the Internet: Promise and Perils. CyberPsychology & Behavior, 3(5), 683-691. [Google Scholar] [CrossRef]
- Mullan, K. & Wajcman, J. (2019). Have Mobile Devices Changed Working Patterns in the 21st Century? A Time-diary Analysis of Work Extension in the UK. Work, Employment and Society, 33(1) 3–20. [Google Scholar] [CrossRef]
- Nadolu, B. & Nadolu, D. (2020). Homo Interneticus—The Sociological Reality of Mobile Online Being. Sustainability, 12(5), 1800. [Google Scholar] [CrossRef]
- OECD (2021a). Information and Communication Technology – Broadband database. Retrieved from [Link]
- OECD (2021b). Time Use – Time Use. Retrieved from [Link]
- Oulasvirta, A., Rattenbury, T., Ma, L. & Raita, E. (2012). Habits make smartphone use more pervasive. Personal and Ubiquitous Computing, 16(1), 105–114. [Google Scholar] [CrossRef]
- Ozkaya, H., Serdar, M., Acar, H., Pekgor, S. & Arica, G.S. (2020). E valuation of the frequency/addiction of smartphone use and its effect on sleep quality in university students. Annals of Medical Research, 27(2), 657-63. [Google Scholar] [CrossRef]
- Panova, T. & Lleras, A. (2016). Avoidance or boredom: negative mental health outcomes associated with use of information and communication technologies depend on users’ motivations. Computers in Human Behavior, 58, 249–258. [Google Scholar] [CrossRef]
- Pantzar, M. & Shove, E. (2010). Temporal rhythms as outcomes of social practices:A speculative discussion. Ethnologia Europaea, 40(1), 19-29. [Google Scholar] [CrossRef]
- Pantzar, M. (2010). Future shock: Discussing the changing temporal architecture of daily life. Journal of Futures Studies, 14(4), 1–22. [Google Scholar]
- Park, S., Yoon, H., Koo, C. & Lee, W.S. (2021). Role of the Leisure Attributes of Shared Bicycles in Promoting Leisure Benefits and Quality of Life. Sustainability, 13(2), 739. [Google Scholar] [CrossRef]
- Perlow, L. (2012). Sleeping with Your Smartphone. Boston, MA: Harvard Business Review Press. [Google Scholar]
- Rosa, H. (2013). Social Acceleration: A New Theory of Modernity. New York: Columbia University Press.
- Saidon, J., Musa, R., Harun, M.H.M. & Adam, A.A. (2016). The conceptual framework of pathological smartphone Use (PSU). Procedia Economics and Finance, 37, 426–431. [Google Scholar] [CrossRef]
- Samaha, M. & Hawi, N.S. (2016). Relationships among smartphone addiction, stress, academic performance, and satisfaction with life. Computers in Human Behavior, 57, 321-325. [Google Scholar] [CrossRef]
- Schatzki, T. (2009). Timespace and the organization of social life. In: Shove, E., Trentman, F., Wilks, R., (Eds.). Time, consumption and everyday life: Practice, materiality and culture (35-48). Oxford: Berg. [Google Scholar] [CrossRef]
- Schrock, A. R. (2015). Communicative affordances of mobile media: Portability, availability, locatability, and multimediality. International Journal of Communication, 9(1), 1229–1246. [Google Scholar]
- Silk, M., Millington, B., Rich, E. & Bush, A. (2016). (Re-)thinking digital leisure. Leisure Studies, 35(6), 712–723. [Google Scholar] [CrossRef]
- Southerton, D. (2006). Analyzing the temporal organization of daily life: Social constraints, practices and their allocation. Sociology, 40(3), 435-454. [Google Scholar] [CrossRef]
- Stefko, R., Bacík, R., Fedorko, R., Horváth, J., Propper, M. & Gavurová, B. (2017). Gender differences in the case of work satisfaction and motivation. Polish Journal of Management Studies, 16(1), 215-225. [Google Scholar] [CrossRef]
- Stefko, R., Dorcák, P. & Pollák, F. (2011). Shopping on the internet from the point of view of customers. Polish Journal of Management Studies, 4(2), 214-222. [Google Scholar]
- Taywade, A. & Khubalkar, R. (2019). Gender differences in smartphone usage patterns of adolescents. International Journal of Indian Psychology, 7(4), 516-523. [Google Scholar] [CrossRef]
- Van Deursen, A.J.A.M., Bolle, C.L., Hegner, S.M. & Kommers, P.A.M. (2015). Modeling habitual and addictive smartphone behaviour. The role of smartphone usage types, emotional intelligence, social stress, self-regulation, age and gender. Computers in Human Behavior, 45, 411-420. [Google Scholar] [CrossRef]
- Venkatesh, V. & Morris, M.G. (2000). Why Don’t Men Ever Stop to Ask for Directions? Gender, Social Influence, and Their Role in Technology Acceptance and Usage Behavior. MIS Quarterly, 24(1), 115-139. [Google Scholar] [CrossRef]
- Wajcman, J. (2015). Pressed for Time: The Acceleration of Life in Digital Capitalism. Chicago, IL: Chicago University Press. [Google Scholar]
- Wang, L. & Lee, J.H. (2021). The impact of K-beauty social media influencers, sponsorship, and product exposure on consumer acceptance of new products. Fashion and Textiles, 8(15). [Google Scholar] [CrossRef]
- Wang, P., Chiu, D., Ho, K. & Lo, P. (2016). Why read it on your mobile device? Change in reading habit of electronic magazines for university students. The Journal of Academic Librarianship, 42(6), 664–669. [Google Scholar] [CrossRef]
|